

NIGER DELTA UNIVERSITY

WILBERFORCE ISLAND, AMASSOMA, BAYELSA STATE.

DEPARTMENT OF CHEMICAL ENGINEERING

FACULTY OF ENGINEERING

HAND BOOK

SEPTEMBER, 2023.

TABLE OF CONTENTS

1.	Vision	ii
2.	Mission	ii
3.	Forward	iii
4.	Philosophy of the Programme	1
5.	Objectives of the Programme	1
6.	Admission Requirements for B.Eng. Programme	
7.	Probation, Expulsion, and Withdrawal	3
8.	Graduation Requirement	3
9.	Duration of Programme	4
10	.Examination-Related Offenses	4
11	.Faculty Courses	4
12	.Domiciliation of Courses	5
13	. Programme Structure	8
14	. Academic Staff	73

Vision

To become one of the leading institutions for the training of Chemical Engineers.

Mission

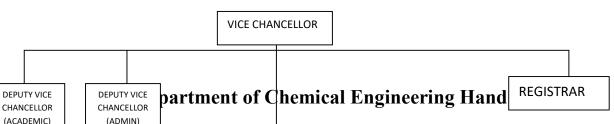
To produce modern high-tech Chemical Engineers for the analysis and determination of solution to problems for both national and global development.

Foreword

The Department of Chemical Engineering is one of the departments that commenced academic activity in the faculty of engineering, Niger Delta University of Bayelsa state in the 2001/2002 academic session, with 15 students. Dr. Humphrey A. Ogoni, now Professor, was the pioneer Ag. Head of Department, with five other teaching staff from the Rivers State University of Science and Technology (RSUST), now Rivers State University (RSU); who are Bayelsa state origin and therefore transferred their services to the new university.

Over the years, the Department has experienced growth in staff strength, student population, competence, qualification of staff, improvement in the quality of curriculum, enhanced academic development of students and commendable performance of students in external competitions.

This prospectus is intended to give an over-view of the programme leading to the award of bachelor's degree (B.Eng.) in Chemical Engineering.


ENG. DR. REWARD K. DOUGLAS Head of Department April 2023

PHILOSOPHY:

To produce chemical engineering graduates who are well-versed in the latest advances in the field, with the ability to adapt to a rapidly changing world. Graduates will have a strong foundation in both theory and practical applications, as well as an understanding of the ethical and social responsibilities of engineers. They will be prepared to take on challenging roles in industry and government, making a positive impact on the world through their work.

OBJECTIVES:

- To give a balanced engineering training suitable for developing a country.
- To enable the student to master the basics in engineering analysis and design.
- To have close association with industries in the region and enhance practical application of engineering principles.
- To take full advantage of the global information network through the internet, and using the concept of "virtual" university.
- To impart sound knowledge to students in the art of application of the related principles in designing equipment and manufacture of products for national economy.
- To impart relevant knowledge to students in oil field operations and their development.

GENERAL ADMINISTRATION OF PROGRAMME

ADMISSION REQUIREMENTS

University Requirement

Joint Matriculation Examination (JME) (Year I), SSCE/GCE, O'level/NECO with passes in 5 appropriate subjects including English Language and Mathematics, obtained in not more than two (2) sittings.

Faculty/Department Requirements

- (i) J.M.E Entry Requirements: Five (5) SSCE/NECO/ O'level credit passes including English Language, Chemistry, Physics, Mathematics or Further Mathematics, any other science subject.
- (ii) Direct Entry Requirements: At least three (3) 'A' level passes at GCE or its equivalent including Physics, Chemistry and Mathematics or Further Mathematics. Candidates must also have two (2) credit level passes at SSCE/NECO/GCE O'level including English Language and Further Mathematics.

General Guidelines

Students in any of the Engineering programmes are expected to take and pass at D-Level, the NUC required ten (10) units of Mathematics, ten (10) units of Physics and ten (10) units of Chemistry to qualify to register for courses in the 300 level. Deficient students at the close of 200-level are no longer engineering students of this University and would be advised to withdraw from the Faculty of Engineering.

Probation, Expulsion, and Withdrawals

Probation is applied to 100 level students who fail to maintain a CGPA of 1.50 at the end of the academic session. The probation status of the student is reversed if the student maintains a CPGA of 1.50 at the end of the next session.

A student shall face expulsion if he/she has committed an offence and has been tried and found guilty by the student disciplinary Committee. Expulsion will be given to the student in line with policy of the University.

A student shall be withdrawn for academic failure if he/she fails to obtain a CGPA of 1.50. However, the rule does not apply to 100 level students. Secondly, students who failed to pass 40% of the courses registered for the session shall also be withdrawn from the University for Academic Failure. A student in final year of student who fails to pass 40% of the courses registered in the session shall be allowed to register for the next session. However, he he/she fails to pass 40% of the registered course for the courses for the courses for the university.

Duration of Programme

The B.Eng. programme in Chemical Engineering runs for five years (10 semesters), comprising of classroom studies, workshop/laboratory, fieldwork and supervised industrial work experienced (SIWE) attachment as follows:

- Year I, II and III classroom, workshop/laboratory work
- Year II long vacation 3 months SIWES
- Year III long vacation 3 months SIWES
- First semester of Year IV classroom, workshop/laboratory
- Second semester and long vacation of Year IV 6 months SIWES
- Year V classroom, workshop/laboratory work and final year project

Examination-Related Offence

S/N	Offence	Remark
1	Possession of mobile phones, lecture notes, storage devices, electronic programmable calculators etc, in the examination hall	e

2	Receiving or attempting to assist either in writing from another student during the examination or communicating verbally	Same
3	Possession and admittance of usage of relevant material in the examination hall	Same
4	Coming to the examination hall with prepared university answer booklet	Same
5	Impersonation-exchange of student matriculation number; alteration of student ID card number etc	Same

Graduation Requirements for Bachelor's Degree

In order to qualify for Bachelor's degree of the Niger Delta University, student must:

- i. Earn a pass grade in supervised industrial work experience (SIWES) where applicable;
- ii. Earn a minimum CGPA of 1.00 or 1.50 (for student admitted into the university from 2013/2014)
- Earn a minimum of 150 units including SIWES for a five year programme or 120 units for a four year programme.
- iv. A transfer student must earn a minimum of 60 units for a four year programme in Niger Delta University
- v. A passing grade is required in all compulsory course of a programme
- vi. A minimum score of 30% must be obtained in required courses, and
- vii. A student may take some elective courses to meet graduation requirements in which pass grades must be obtained.

Final Classification of Degrees

For the purpose of final classification of degrees, a student should have achieved one of the following CGPAs:

<u>CGPA</u>		CLASS OF DEGREE
4.50-5 .00	-	First Class
3.50-40.49	-	Second Class (upper division)
2. 40-3. 49	-	Second class (lower division)
1. 50-2. 39	-	Third class
1.00-1.49	-	Pass

For students admitted into the University from the 2013/2014 academic session the CGPAs are as follows:

<u>CGPA</u>	CLASS OF DEGREE
4.50-5.000 -	First Class
3. 50-4. 49 -	Second Class (upper division)
2. 40-3. 49 -	Second Class (lower division)
1. 50-2. 39 -	Third class

Format for Course Numbering

Faculty Courses

The faculty courses are numbered according to the Senate Curriculum and Instruction Committee (SCIC) recommendation on course numeration. The course number starts with FCE followed by a three-digit number.

The first letter (F) represents Faculty

The second letter (C) represents Course

The third letter (E) represents Engineering

The first digit indicates the course level where

- 1 100 level
- **2** 200 level
- **3** 300 level
- **4** 400 level
- **5** 500 level

The second digit indicates the department where the course is domiciled or run:

- 0 Faculty of Engineering General Course
- 1 Agric & Environmental Engineering
- 2 Chemical Engineering
- **3** Civil Engineering
- 4 Electrical/Electronic Engineering
- 5 Marine Engineering
- 6 Mechanical Engineering
- 7 Petroleum Engineering

The third digit indicates the semester in which the course is offered:

 $Odd \; number-first \; semester$

 $Even \ number-second \ semester$

Course Domiciliation

Faculty courses are domiciled in the various departments that makes up the Faculty of Engineering as indicated below:

In the Department of Agricultural and environmental Engineering

FCE 212 – Strength of materials I

FCE 411 – Engineering Practice and Research Presentation

In the Department of Chemical Engineering

FCE221 – Material Science

In the Department of Civil Engineering

- FCE 131- Engineering Graphics I
- FCE 132- Engineering Graphics II
- FCE 232 Fundamentals of Fluid Mechanics
- FCE 532 Entrepreneurship, industry and Engineering law

In the department of Electrical/Electronic Engineering

FCE 244 – Fundamentals of Electrical Engineering

In the Department of Mechanical Engineering

- FCE 261 Engineering Graphics III
- FCE 263 Workshop/Manufacturing Technology
- FCE 265 Engineering Statics
- FCE 267 Engineering Thermodynamics
- FCE 262 Engineering Dynamics

In the Department of Petroleum Engineering

FCE 571- Engineering Economics Management

In the Faculty as General Courses

- All year one courses, all General Studies courses and any other course serviced from sister faculties/departments
- FCE 201 Engineering Analysis I
- FCE 202 Engineering Analysis II

- FCE 302 Engineering Analysis IV
- FCE 200 SIWE I
- FCE 300 SIWE II
- FCE 402 SIWE III

Programmme Structure- Chemical Engineering (Year One and Two)

Year 1 Semester 1

S/N	Course	Course Title	L	Т	P	Units
	Code					
1	GST 101	Use of English I	2	3	0	3
2	MTH 105	Engineering Mathematics I	3	3	0	5
3	PHY 105	General Physics I	2	3	2	5
4	CHM 101	General Chemistry I	2	3	2	5
5	FCE 131	Engineering Graphics I	2	0	2	2
6	GST 100	Fundamentals of Computer Science	3	0	0	2
	1		14	12	6	22

Year 1 Semester 2

S/N	Course	Course Title	L	Т	Р	Units
	Code					
1	GST 102	Use of English II	2	3	0	3
2	GST110	Nigerian People and Culture	3	0	0	3
3	FCE132	Engineering Graphics II	2	0	2	2
4	MTH 106	General Mathematics II	3	3	0	5
5	PHY 106	General Physics II	2	3	3	5
6	CHM 102	General Chemistry II	2	3	2	5
	1		14	12	7	23

Year 2 Semester 2

S/N	Course	Course Title	L	Т	Р	Units
	Code					
1	FCE 201	Engineering Analysis I	2	3	0	4
2	FCE 261	Engineering Graphics III	2	0	2	2
3	FCE 263	Work/Manufacturing Technology	3	0	2	3
4	FCE 265	Engineering Statics	3	3	0	3
5	FCE 221	Material Science	3	0	2	3
6	FCE 267	Engineering Thermodynamics	3	3	0	3
			16	6	6	18

YEAR 1, FIRST SEMESTER

GST 101: Use of English 1 (3 Units) C

An overview of the concept of language, importance of the English Language in Nigeria. The sentence, the phrase/clause, parts of speech, rule of concord, direct and indirect speech. The paragraph, punctuation, figure of speech, oral communication (Vowels and Consonants).

MTH 105: Basic functions and Series (5 units) C

Sets, mapping, functions inequalities, graphs, quadratic equations, Remainder theorem, surds and indices, AP, GP, logarithmic and exponential functions, permutations and combinations and binomial theorem. Trigonometry: Trigonometric and hyperbolic functions, solution of trigonometric equations in three unknowns. Complex numbers. Analytical. Geometry: Equations of lines, circles, conic sections, generalized to three-dimensional space lines, planes, spheres. Review of Calculus: Limit of a sequence derivations and differentials, L'hospital rule, methods of integration, definite integrals. Infinite series: Infinite series Taylor's and Maclaurin's series.

PHY 105: Physics 1 (5 Units) C

Physical quantities: units, vectors, particle. Kinematics and dynamics. Oscillations. Work, Energy, Momentum, Angular Momentum. Motion of rigid bodies. Collisions. Hooke's Law, Sound waves, Calorimetric. Gas laws and kinetic Theory. Heat and work. Laws of thermodynamics and applications. Surface tensions.

CHM 101: General Chemistry 1 (5 Units) C

Atomic and molecular structure. Electronic configuration and periodicity. Metals and non-metals. Chemical bonding. The Mole concept. Chemical equations and stoichiometry. Acids, bases and salts. Chemical equilibrium. Ionization of water. Indicators etc. the pH scale, Buffer solutions. Hydrolysis of salts. Redox reactions. Electro-chemical cells and electrode potentials. Electrolysis. Chemical Energy. Thermodynamics. Chemical kinetics-chemical reaction rates; homogeneous and heterogeneous catalysis.

FCE 131 Engineering Graphics I (2 Units) C

Use of draughting instruments, lettering, dimensioning, layouts. Constructions of geometrical figures, conics, etc. Graphical calculus and applications. Development, intersection of curves and solids, tangents, etc. Projections; orthographic and isometric, sectional views.

GST 100 Fundamentals of Computer Science (3 Units) C

Introduction to Computers, Computers and uses; Computer logic softwares and hardwares. Basics of computer language; FORTRAN, BASIC, COBOL, etc. Basic computer appreciation; MS word MS DOS, etc. Flow Charting and computer algorithm design. Extensive exercises in solution to engineering problems using computer algorithms, flow charts and/or other pseudo codes. Introduction to advanced programming languages. Application of computer BASICS, FORTRAN. Flow charting/pseudo codes to simple engineering problems. Basic computer appreciation and overview in MS WORD, Excel, CorelDraw.

YEAR 1, SECOND SEMESTER

GST 102: Use of English II (3 Units) C

Vocabulary, root and affixes; idioms, figures of speech (part II); summary. Essay writing, minute writing, speech writing

GST 110: Nigerian Peoples and Culture (3 Units) C

Introduction to man and society, history of Nigerian society and people (Hausa/Fulani, Yoruba, Ibos, Niger Delta, etc). Structural components of Nigerian people and culture. Cultural similarities and variations of the Nigerian people. Culture, environment and health practices in Nigeria. Nigerian heritage, nature and culture of traditional religion, rites of passage, systems of marriage, decent, kinship and family. Systems of social stratification. The evolution of Nigeria; politics and democracy. Ethnic relations, prejudice, discrimination and inter-ethnic conflicts and resolution. Traditional economics system and sustaining the economic profile in Nigeria.

FCE 132 Engineering Graphics II (2 Units) C

Pictoral/Freehand Sketching, conventional practices. Architectural drawing. Advanced topics in auxiliary and sectional views, developments, intersections of surfaces, projections.

MTH 106: Linear Algebra and Ordinary Differential Equation (5 units) C

Scalars and Vectors, vector algebra, vector calculus differentiation and integration. The gradient of scalar field, the divergence and curl of a vector field, application to coordinate system. Eigen values & Eigen vectors. More Matrices: Adjoins and inverse, elementary transformations. The rank of a metric, system of linear equations. Differential Equation: First order differential equations and its geometric interpretation. Second order differential equations with constant coefficients. Exact equations, separable variables, Homogenous integrating, Fadol improper integrals, Gamma, Delta, Seta, and Errol and

other functions, geometric and physical applications. Linear programming: Problem formulation, method of solution.

PHY 106 Physics II (5 Units) C

Electrostatics. Electric intensity. Coulomb's and Gauss' laws. Capacitors. D.C. current circuit, Electrolytic cells. Magnetic fields of currents, Electro-magnetic induction generations. Induction. Electric motors. A.C. circuit theory-theories of magnetism. Optical instruments. Quantum theory. Photoelectric effect. Bohr's atom model of Energy levels and lines spectra. Matter waves and spectra. Semi-conductors.

CHM 102: General Chemistry II (5 Units) C

Colligative properties. Ideal solution.Osmotic pressure and determination ofmolecular mass. Raoult's law. Henry's law.Phase rule and phase diagrams. Emulsions and suspensions.Transport phenomena; diffusion and viscosity.Sources of organic compounds.Aliphatic and aromatic hydrocarbons nomenclature. Homologous series, isomerism, functional groups; alcohols, carbonyls, carboxlic acids, esters and ethers, Introduction to spectroscopy-basic principles.

YEAR 2, FIRST SEMESTER

FCE 201 Engineering Analysis 1 (4 Units) Pre-requisite: MTH 105 & MTH 106 C

General engineering systems, Rate systems and their relationships, General principles of optimization, Use of functions of several variables, partial derivatives, total differentials in components design and optimization. Taylor's formula and its extension to functions of several variables, maxima and minima, LaGrange multipliers and their engineering applications. Functions of complex variables, analytic functions, integration in the complex plane and phase systems, infinite series in the complex plane and mapping. Taylor's and Laurent's expansions, the theory of residues, conformal mappings and application of Fourier series integrals, Laplace transform. Method for solving linear differential equations with structural illustrations. Convolution and Duhamel formulae and application.

FCE 261 Engineering Graphics III (2 Units) Pre-requisite: FCE 162 C

Introduction to limits, fits and tolerance. Surface roughness determinations. Drawing methods for Cam-profiles. Presentation and drawing of various types of gears. Assembly and sub-assembly drawing of elements, workshop, drawings, correction and modification of drawings, general engineering drawing symbols. Reading of blueprints.

FCE 263 Workshop/Manufacturing Technology (2 Units) C

Safety and safe working practices in the workshop. Carpentry and joinery process.Forging furnace and forging operations. Fitting and plumbing; hand-drilling and tapping, measuring instruments such as mictrometers, venier, height gauges, bevel protector, sinebar, gauage blocks etc. Checking surface for flatness, squareness etc. Types of patterns and pattern main, moldings sand, molding process: machine molding. Ferrous and no-ferous castings, various casting methods and casting defects. Arc and gas welding processes, soldering and brazing. Introduction to the later; milling shaping and drilling machines. Cutting fluid types and applications.

FCE 265 Engineering Statics (Pre-requisite: MTH 106) (3 Units) C

Basic Concepts; Newton's Laws of Motion, mathematical modeling and analysis. Statistics; force systems, resultant of coplanar and spatial force systems, equilibrium conditions. Shear forces and bending moments in beams and shafts, analysis of trusses and frames. Friction between dry surfaces. Moment of Inertia, plane figures and composite bodies.

FCE 221 Material Science (Pre-requisite: CHM 102) (2 Units) R

The atomic structure. Crystal structure and material bonding-Physical properties of materials. Dislocation theory. Metals-ferrous and non-ferrous. Polymers, thermosetting and thermoplastic materials. Wood- natural and modified. Rubber. Ceramics and composite materials.

FCE 267 Engineering Thermodynamics (3 Units) (Pre-requisite: MTH 105) C

Fundamentals concepts; systems properties and process, Heat and work. First law; closed system, open systems, model applications. Working fluids, liquid, vapour and perfect gases. Steam tables and charges. Second law, cycle efficiency. Reversibility. Entropy simple cycles; Carnot, Rankine, air standard.

GST 221: Peace and Conflict Resolutions (3 Units) C

Basic Concepts of peace and conflicts, types, sources and causes of conflict and violence. Conflict management strategies; traditional approaches, alternative dispute resolution and third window in judiciary. Case studies and group discussions, comparative study of ethnic militia and youth insurgency in Nigeria. Models of conflict resolution and peace building. Peace keeping efforts. Excursion visits and group empirical studies.

YEAR 2, SECOND SEMESTER

GST 212: Introduction to Philosophy and Logic (3 Units) C

The nature and scope of philosophy; Misconceptions, popular notions, etymological definition of philosophy, branches of philosophy-metaphysics, epistemology, ethics, logic, aesthetics. Ancient, medieval modern and contemporary periods of philosophy. The problems of knowledge, appearance, reality, mind and body, freedom and necessity. Distinction between logic and other disciplines. Argument and its components (preposition, premise, conclusion), detailed discussion on proposition and its features, disjunctive and hypothetical propositions.

FCE 202 Engineering Analysis II (3 Units) C

The concept of uncertainties and in engineering productions. Basic system engineering minimization, maximizations principles, simplex and queuing principles. Engineering experimentations, field surveys, predictions and reports. Probability models: frequency distribution, central tendency and dispersion, moments, discrete random variables, binomial distribution, Poisson normal distribution, sampling and sampling distributions,

estimation of population parameters, hypothesis testing, correlation and regression, analysis of variance, experimental design.Statistical quality control.

FCE 246 COMPUTER ENGINEERING II (3 Units) C

Further programming in C++/Java: Selection and iteration, the 'if' statement, the 'if-else' statement, compound statements, logical operators, switch statements, etc. The while, do-while, and for-statements: Arrays and structures, strings and functions, objects and classes, pointers and operator overloading. Introduction to the Java programming language.

FCE 244 Fundamentals of Electrical Engineering (3 Units) R

The electric circuit. DC and AC analysis technique. Measurement of basic electrical quantities. Electrical machines. Alternating voltage and electric devices. Installation techniques.

FCE 262 Engineering Dynamics (Pre-requisite: MTH 106) (3 Units) C

Plane kinematics and kinetics of particles. Kinetics of particle: Newton's second law. Work and energy, conservation of energy and momentum, fields of forces, impact coefficient of restitution. Kinetics of system of particles. Generalized Newton's second law, steady mass flow and variable mass rocket motion. Plane kinematics and kinetics of rigid bodies. 3D dynamics of rigid bodies, gyroscopic motion and gyroscopic stabilization.

FCE 232 Fundamental of Fluid Mechanics (3 Units) C

Fundamentals concepts: Characteristics of fluids, fluid properties, dimensions and units. Nature of fluid flow. Newtonian and Non-Newtonian fluids. Fluid statics: pressure, buoyancy, force on submerged body, stability of bodies in fluids. Fundamentals of fluid motion. Conservation laws of mass, momentum and energy. Euler's equation; Bernoulli's equation; applications; incompressible viscous flow; ideal and real fluids.Friction loss,

laminar flow in pipes and between parallel plates. Flow measurements, pressure, velocity, rate measurement techniques.

FCE 212 Strength of Material (3 Units) C

Force equilibrium free body and force diagrams; concept of stress and strain, generalized stress-strain relationship, Young's Modulus and other strength factors, Tensile test; Biaxial and Triaxia states of stresses and strains, axially loaded bars, composite bars, temperature stresses and simple indeterminate problems; hoop stress; cylinders and rings. Bending moment, shear force and axial force diagrams; torsion and applications. Stress transformations, failure theories and the Mohr's circle. Theories of bending of beams, symmetrical and unsymmetrical bending and the concept of shear center.Strain energy and applications.

FCE 200 SIWE I (0 Unit) R

Introduction to practices and skills in general engineering through engineering instructions in the operation of hand tools, power tools for wood and metal works. Safety practices and other hands on experience in safe usage tools and machine. Statement of experience in any selected practical task (Course to be taken during vacation following 200 level).

Department Courses – Chemical Engineering (Year Three to Year Five)

Groups of Departmental Courses

Group	Group Title/Course	Year Semester
1. Chemical/Petroleum Organic Synthesis	Engineering Technology/Petr	ro-Chemical & Organic &

CHE 311 – Fundamentals of Petroleum Engineering	III	1
CHE 312 – Petroleum Processing I	III	2
CHE 415 - Petroleum Processing II	IV	2
CHE 511 – Chemical Technology I	V	1
CHE 513 –Petrochemicals Technology I	V	1

CHE 514 – Chemicals Technology II	V	2
CHE 516 - Petrochemical Technology II	V	2
CHE 517 – Biochemical Engineering	V	1
CHE 413 – Polymer Technology	IV	1
2. Industrial Chemistry and Thermodynamics		
CHE 321 – Chemical Thermodynamics	III	1
CHE 322 – Industrial Analytical Chemistry	III	2
CHE 323 – Organic Processes	III	1
3. Process Modeling, Control and Dynamics		
CHE 431 – Process Analysis and Optimization	IV	1
CHE 433 – Instrumentation and Process Control	IV	1
CHE 532 – Process Dynamics	V	2
CHE 533-Modeling of Chemical Engineering Processes	V	1
4. Chemical Reaction Engineering and Catalysis		
CHE 342 – Catalysis and Chemical Reaction Kinetics	III	2
CHE 441 – Chemical Reaction Engineering I	IV	1
CHE 542 – Chemical Reaction Engineering II	V	1
5. Separation and Process Design		
6. General Engineering		
CHE 360-Corrosion Engineering	III	2
CHE 362- Metallurgy	III	2
CHE 461-Computer Application in Chemical Engineering	IV	1
CHE 562- Engineering Management and Process Economics	V	2
CHE 564-Environmental Pollution, Control and Safety	V	2
CHE 566- Fuel Technology and Energy Resources	V	2
CHE 572 Entrepreneurship and Industry	V	1
CHE 568 – Project	V	1&2
CHE 566 – Seminary	V	2

Programme Structure

S/N	Course Code	Course Title	L	T	P	U
1	FCE 301	Engineering Analysis III	3	3	-	3
2	CHE 311	Fundamentals of Petroleum Engineering	3	0	0	3
3	CHE 321	Chemical Thermodynamics	3	2	0	4
4	CHE 351	Process Calculation	2	2	0	3
5	CHE 353	Fluid Particle Technology	2	0	3	3
6	CHE 323	Organic Process	2	0	0	2
7	CHE 361	Metallurgy	2	0	0	2
			19	9	6	20

YEAR 3-SEMESTER I

YEAR 3-SEMESTER II

S/N	Course	Course Title	L	T	P	U
	Code					
1	FCE 302	Engineering Analysis IV	3	3	0	3
2	CHE 312	Petroleum Processing I	3	0	3	3
3	CHE 322	Industrial Analytical Chemistry	2	0	3	3
4	CHE 342	Chemical Reaction Kinetics	2	2	0	3
5	CHE 352	Transport Phenomena	2	2	3	4
6	CHE 362	Corrosion Engineering	2	0	0	2
7	CHE 314	Separation Process I	2	0	2	3
8	GST 300	Entrepreneurship Studies	2	0	0	2
			16	7	11	23

YEAR 4-SEMESTER I

S/N	Course	Course Title	L	T	Р	U
	Code					
1	FCE 415	Petroleum Processing II	3	-	3	3
2	CHE 413	Polymer Technology	2	0	0	2
3	CHE 430	Chemical Engineering Process Analysis,	3	2	0	3
		Optimization				
4	CHE 433	Instrumentation and Process Control	3	0	3	3

5	CHE 441	Chemical Reaction Engineering I		2	0	3
6	CHE 453	Separation Process II		0	3	3
7	CHE 451	Process Design I	2	2	0	3
8	GST 461	Computer Application in Chemical	2	0	3	2
		Engineering				
9	FCE 411	Engineering Practice & Research	1	3	0	2
		Presentation				
			22	9	12	24

YEAR 5-SEMESTER I

S/N	Course Code	Course Title	L	T	P	U
1	FCE 511	Chemical Technology I	3	0	3	3
2	CHE 513	Petrochemical Technology I	3	0	3	3
3	CHE 517	Biochemical Engineering	3	0	0	3
4	CHE 533	Modeling of Chemical Engineering Processes	3	2	0	3
5	CHE 541	Chemical Reaction Engineering II	3	2	0	3
6	CHE 555	Process Design II		2	0	4
7	CHE 571	Engineering Economics and Management	2	0	0	2
8	CHE 563	Fuel Technology	2	0	0	2
			22	6	6	23

YEAR 5 – SEMESTER 2

S/N	Course Code	Course Title	L	T	P	U
1	LAW 430	Industrial Law and Relations	2	0	0	2
2	CHE 514	Chemical Technology II	3	0	3	3
3	CHE 532	Process Dynamics	3	2	0	3
4	CHE 562	Engineering Management Process Economics	3	2	0	3
5	CHE 566	Pollution Control and safety	2	0	0	2

6	CHE 572	Entrepreneurship and Industry	2	0	0	2
7	CHE 516	Petrochemical Technology II	3	0	3	3
			18	4	6	18

Project carries a total of 6 Units spread through the two semesters of Year V. Description of courses – Chemical Engineering

(Year Three to Year Five)

YEAR 3, FIRST SEMESTER

FCE 301 Engineering Analysis III (3 Units) (Pre-requisites: MTH 105 & MTH 106, FCE 201) C

Overview of general engineering responses to mathematical applications in problem solving. General second order differential equations, systems of linear differential equations and applications in theories of failure. Partial differential equations, Laplace's equation, the wave equation, the heat equation, Bessel functions and Legendre polynomials. The line integral, surface integrals. Double and triple integrals, simply and multiply connected domains and applications. Green's stokes and divergence theorems with applications. Laplacein operator: Co-ordinate transformation. The line integral, surface integrals, simply and multiply connected domains and applications. Green's stokes and divergence domains and applications. Green's, Stoke's and divergence theorems with diverse engineering applications.

CHE 311 – Fundamental of Petroleum Engineering (3 Units)

Origin and occurrence of petroleum and gas, oil exploration methods; Drilling and drilling bits; Blowout preventers and drilling fluids, fishing techniques, Offshore drilling; well completion, Logging, petroleum production; Stabilization of petroleum–Oil, gas and water separation. Basic tests on petroleum quality; Petroleum transport and storage.

CHE 321 – Chemical Engineering Thermodynamics (4 Units).

First law and the enervation of chemical reactions. Second law and calculation of entropy changes. Definitions of thermodynamics potentials. Free energy and function. Chemical potentials and affinity of reactions. Equilibrium in chemical reaction systems. Equilibrium constant of a reaction. Third law. Thermal data. Thermodynamics of

electrochemical cells. Work production from chemically reacting systems. Phase relations and thermodynamics of solutions. Equilibrium in heterogeneous reactions.

CHE 351 – Process Calculations (3 Units)

Basic definitions: Chemical equations and stoichiometry. Combustion. Ideal gas laws. Real gas relationships. Vapour pressure, saturation and humidity. Material balances. Steady state processes involving chemical reaction, stepwise counter-current process, recycle, bypass and purge calculations, condensation and abeling. Energy balances. Heat capacity. Calculation of phase transitions. Heat of reaction. Combined material and energy balances for steady state and unsteady state processes.

CHE 353 – Fluid Particle Technology (Pre-requisite: CHE 351) 3 Units.

Particle classification/drag forces on rigid bodies, drag coefficients, settling velocity and stoke's law. Classification of solids. Centrifugal separation. Cyclones and centrifuges. Electrical separation. Mixing of solids and fluids. Filtration, packed and abeling bed systems; their applications. Drying and humidification.

CHE 323 – Organic processes (2 Units)

Nomenclature and conformation properties of hydrocarbons, Aromatic and heterocyclic compounds. Mechanism and stereochemistry of hydrocarbon reactions. Aromatic substitution rearrangements. Characteristic reactions of functional groups–Alcohols, carbonyl, etc. Optical, geometric, chain and disaster osomerism. Basic principles of electrochemistry, chemical kinetics and nuclear chemistry.

CHE 361 – Metallurgy (3 Units)

Geology of metals. Ore concentration. Ore processing. Iron and steel production. Manufacture of aluminium, copper, zinc, tin and silver. Metallurgical slag. Testing of metals crystallography. Coal carbonization.

YEAR 3, SECOND SEMESTER

FCE 302 Engineering Analysis IV (3Units)(Pre-requisites:FCE 201 and FCE 202) C

The recovery techniques, mathematical applications in system discretization processes, the finite difference, interpolation formulae, numerical integration and integration, their uses in the system analysis and discretization. The numerical solution of linear and nonlinear equation, differential equations and applications to engineering problems. Finite element method and boundary element and its applications.

CHE 312 – Petroleum Processing I (3 Units)

Chemical composition of petroleum, Desalination processes, Atmospheric and vacuum distillation of petroleum, true boiling point and equilibrium flash vaporization curves for petroleum and petroleum fractions. Gasoline stabilization and sweetening. Properties of fuels–octane number, cetane number, etc. Hydrocarbon gas purification and separation, LPG production. Gas processing–alkylation and polymerization. Chemistry, thermodynamics and kinetics of thermal and catalytic processes in the petroleum business. Thermal processes–coking, thermal cracking and pyrolysis. Catalytic cracking and isomerization.

CHE 322 –Industrial Analytical Chemistry (Pre-requisite: CHM 101 & 102) 3 Units.

Technical and analytical weighing. Sampling. Preparation of reagents. Types of glass and assembly of gas apparatus. Filtration, decantation, evaporation and crystallization. Water purification. Volumetric and gravimetric analysis. Conductimetric and potentiometric titrations. Instrumental techniques. Calorimetric, absorptiometry and spectrophotometry. X-ray analysis and microscopy. Gas chromatography.

CHEM 342 – Chemical Reaction Kinetics and Catalysis (3 Units)

Rate expressions for the chemical reactions, law of mass action. Constant volume, reversible, irreversible, paralleled, and consecutive reactions.Reaction order and its determination. Variable volume reactions, Arrhenius equation and activation energy. The theories of reaction rates, especially the collision theory and the theory of absolute

reaction rates. Homogeneous and heterogeneous catalytic reactions and their kinetics. Kinetics of electrochemical processes. Equilibriums in ionic solutions.

CHE 352 – Transport Phenomena (4 Units)

Dimensional analysis and dimensionless groups, Boundary-layer theory, Navier-Stokes equation and applications in chemical engineering, laminar and turbulent flow of incompressible viscous fluids (isothermal flow over a flat plate, in tubes; non-isothermal flow); Introduction to rheology, flow in non-circular tubes, Non-Newtonian fluids, Turbulent flow in pipes and channels, one-dimensional compression flow. Energy equation, free and forced convective heat transfer (over a flat plate, in a tube and sphere). Introduction to multiphase phenomena (bubble dynamics, cavitation, fundamentals of two phase flow), Definition of the friction factor, macro-scopic mass, momentum and mechanical energy balances (Bernoulli's equation), metering of fluids. Diffusion through spherical and cylindrical coordinates. Diffusion with homogeneous and heterogeneous reactions. Interphase and multiphase transfer.

CHE 362 – Corrosion (2 Units)

Basic concepts of corrosion. Classification of corrosion processes. Nature of films, scales and corrosion products of metals. Effects of metallurgical structure on corrosion. Corrosion in aqueous solutions. Effect of environment on corrosivity, effect of mechanical factors. Corrosion control: cathodic and anodic protection, metallic and paint coatings. Corrosion testing, monitoring and inspection.

CHE 314 Separation Process I (3 Units).

General concepts of the unit operations in the chemical industry. Diffusion separation process, isothermal gas absorption, membrane separation, reverses osmosis and dialysis. Vapour-liquid equilibra, steam stripping. Hydrodynamics of packed beds and plate columns. Types of packages, pressure drop calculations including Argon's equation for pressure drop. Introduction to drying and humidification.

YEAR 4, FIRST SEMESTER

CHE 411 – Petroleum Processing II (3 Units) (Pre-requisite: CHE 311)

Catalytic cracking and hydro-cracking. Lubricating oil properties. Manufacture of lubricating oils. Deasphalting, phenol and furfural extraction, de-waxing, clay treatment and hydro-finishing processes. Grease production. Refinery layout. Safety rules. Environmental protection in the petroleum refinery. Manufacture of bitumen.

CHE 430 – Chemical Engineering Process Analysis, and Optimization (3 Units)

Review of elementary theorems and operations on vectors and matrices. Application to chemical engineering stage processes. Formation of simple and complex chemical engineering problems and their solution. Numerical methods for solving linear and non-linear equations, ordinary and partial differential equations. Introduction to optimization, general optimization problems, basic steps of solving optimization problems and methods. Linear programming. Numerical optimization techniques. Optimization of stage systems.

CHE 433 – Instrumentation and Process Control (4 Units)

Process measurement. Pressure, force, level, flow, temperature, humidity, density, viscosity. Primary element calibration. Signals nozzles, baffle and relay principles, Balancing principles. Transmitters. Controller and valves actions and mechanisms. Control responses: on-off, proportional, automatic, reset, pre-act, 3-ter, gap control. Automatic controllers and inter-linked instruments. Concept of control loops. Ratio, Cascade, spilt range, override, and point, time cycle and forward feed controllers. Instrument error and recognition of faults.

CHE 441 – Chemical Reaction Engineering II (3 Unit)

Classification of reactors. Chemical kinetics as applied to batch and continuous reactors, single ideal reactors. Steady state, mixed, and plug flow reactors. Holding time and space for flow systems. Design equations for single reactors. Batch reactor, mixed versus plug

flow reactors. Reactors in series and in parallel. Recycle reactors, concepts of residue time distribution.

CHE 453 – Separation Process II (3 Units)

Vapor-liquid equilibrium and distillation. Distillation equipment. Multicomponent distillation. Vacuum distillation and steam stripping. Azeotropic and extraction distillation. Molecular distillation. Leaching of solids. Liquid-liquid extraction. Theory of crystallization in mono-and multi-systems. Crystal growth. Dialysis. Reverse osmosis. Electro-dialysis.

CHE 451 – Process Design I (3 Units)

General scope of design. Factors influencing cost of product. Process evaluation. Block diagrams. Mass and energy balances. Process flow-sheets, flow-sheet symbols, engineering flow-sheets, mechanical flow diagram, utility flow-sheets. Presentation and discussion of real design problems. Selection between packed and plate towers and column internals. Detailed design procedures for distillation and absorption. Applicability of these methods to vacuum and high pressure operation. Mechanical design of columns including foundation and supporting structures.

CHE 461 – Computer Application of Chemical Engineering (3 Units)

Application of computer system to process dynamics, chemical engineering design and plant layout and flow sheeting, use of AutoCAD.

FCE 411 Engineering Practice and Research Presentation (2 Units) C

Philosophy of science and engineering. History of engineering and technology. The engineering profession, engineering literacy professional bodies and engineering societies' code of conduct and ethics. Safety in engineering. Professional use of English language for letters, specification distributions, presentation of charts, graphs, tables,

writing of proposals and case studies, etc. Research methodology and presentation, use of MS, PowerPoint, etc.

YEAR 4, SECOND SEMESTER

FCE 402 SIWES III (6 units) C

On the job training to acquire industrial experience and acts of responsibility to be obtained from the industry relevant to the student's chosen field/specialization. This is to be taken in semester 2 in the 400 level.

YEAR 5, FIRST SEMESTER

FCE 571 Engineering Economics and Managements (3 Units) R

The nature and scope of economics. Basic concepts in engineering economics. The interest formulae, discounted cash flow, present worth, equivalent annual growth and rate of return comparisons. Break even analysis, Replacement analysis, cost benefit analysis, concept of management tasks. Leadership patterns. The concept motivation, control and delegation of authority. Organization theories and concepts. Industrial relations. Operational research-history, definitions, theories, structure; Models, art of modeling and simulations, linear programming (graphical solution), basics of the simplex method, sensitivity analysis, decision theory and queuing models. Applications in engineering practice.

CHE 511 – Chemical Technology I (3 Units)

Chemical industry in Nigeria. Raw material resources and utilization. Basic principles of chemical technology. Technology of industrial acids-sulphuric, phosphoric, etc. Fertilizers. The silicate industry: ceramics, glass and cement manufacture. Electrolysis and the production of sodium hydroxide, chlorine and hydrochloric acid.

CHE 513 – Petrochemical Technology I (Optional) (3 Units)

Raw materials and their processing techniques ethylene, acetylene, synthesis gas and liquid hydrocarbons; properties of olefins, thermodynamic stability of hydrocarbons olefin production; use of polymerization reactions, raw materials from aromatic hydrocarbons: sulphonation, chlorination, nitration, oxidation, hydrogenation, aromatization, nomerization reactions, synthesis on bases of acetylene, carbon monoxide and synthesis gas.

CHE 515 – Fundamentals of Biochemical Engineering (Optional) (3 Units)

Introduction to microbiology–cells, cell structure and physiology. Metabolic pathways and bioenergetics, kinetics of enzyme. Catalyzed reactions. Bio-reactors, substrates and products batch, CSTP, plug flow reactors, airlift type of fermentor and ponds. Control and systems management, pH, temperature, abeling cultures and their isolation.

CHE 541-Chemical Reaction Engineering II (Pre-requisite: CHE 441) 3 Units.

Design for multiple reactions: reactions in parallel and in series. Extensions and applications of series and parallel reactions. Temperature and pressure effects. Design of fluid particle reactors. Chemical reactions control and gas film diffusion control processes. Fluidized bed reactors. Slurry reaction kinetics. Design of fluid reactors. Solid catalyzed reactors. Design of stage dadiabatic packed bed reactors, and abeling bed reactors.

CHE 555 Process Design II (4 Units)

Reasons for scale up and basic principles. Heat exchange system. Design and scale up of jacketed vessels and shell-and-tube heat exchangers. Fluid flow systems: scale up of pumps and pipe networks for laminar and turbulent flow. Liquid mixing systems: general principles of scale-up and the use of pilot plant data. Optimization of plant dimensions, operating condition and the economics of alternatives. Plant layout.

YEAR 5, SECOND SEMESTER

FCE 532 Engineering law, Entrepreneurship and Industry, Introduction and Sources of Law.(2/0/0, 2 Units)

Industrial/Engineering law and practices, liabilities intorts: assaults, negligence and strict liability. Law of contract: independent contractors, work men compensation. Property law: partnerships, intellectual property copyright, trademarks, design patents. Incorporation of company and registration. Arbitration. Organizational structure of manufacturing outfits. Definition of and starting a small and medium scale enterprise (SME). Market surveys, feasibility studies, projects and contract documentation and handling, BOQs, specifications, planning and scheduling, funding and fund sourcing, product, quality control, safety procedures.

CHE 514-Chemical Technology II (3 Units)

Fermentation. Manufacture of industrial alcohols, malt beverages and beer. Sugar from cane and beer. Processing of cassava and its derivatives. Palm oil and soap production. Detergents-natural and synthetic types; manufacture and biodegradability. Pulp and paper manufacture, specialty papers. Processing of vegetable oils and animal fats. Surface coatings and paint processing technology. Printing inks, polishes and adhesives.

CHE 516-Petrochemical Technology II (Optional)(3 Units)

Halogenation of paraffins- methane. Ethane, olefins, ethylene-liquid and gaseous phase halogenations processes. Chlorination products of olefins: methylchloride, synthetic fibres, glue and plastics, vinyl chloride from acetylene, Freon and antifreezes; hydrolysis,hydration, dehydration. Esterification processes in theproduction of solvents, plastificators, syntheticlubricants, and complex organic ethers. Monomers forabelingtion reactions, oxidation of paraffins and olefins; ethylene oxide and some higher oxides of hydrocarbons.Synthesis of amides; condensation of aldehyde witholefins: synthesis of rubber.

CHE 532 - Process Dynamics (3 Units) (Pre-requisite: FCE 301,302)

Components of a control system; operation and design. Basic control actions, valves. Transfer functions. Derivation of dynamic equations for simple instrumentsthermometers, liquid level and manometer. Dynamic equations for simple models. Mixing vessels, single CSTR and CSTR in series. Use of block diagrams. Systems response to impulse. Step and sinusoidal inputs. Frequency response.

CHE 566 Environmental Pollution Control and Safety (2 Units)

Air and water pollution control legislation. Air and water quality standards, toxicity of pollutants to the natural environment. Air pollution control by particulates and gas removal. Filtration, cyclones, adsorption, combustion and dispersion. Water pollution control by biodegradation. Filtration, ion exchange, chemical treatment and coagulation. Noise pollution and sonic booms. Pollution monitoring and pollution control in petroleum industries. Treatment of refinery effluents.

CHE 564-Fuel Technology (2 Units)

Solid Fuel: Wood, peat and coal- their origin, classification and mechanical preparation, combustion of coal: low and high temperature cokes. Solid fuel for specific purposes: liquid fuels. Oil products derived fromcoal. The Fisher-Tropsch process. The oil fuels. Gaseous fuels: natural gas, coal gas. Fuel gas cleaning and Purification. Choice of fuels and fuel economics. Techno-economic aspects of renewable energies- the future and the present. Techno-economic aspects of non-renewable energies-the present and the foreseeable.

Status of Courses

All courses in the various degree programmes of the Niger Delta University are classified as follow:

- i) Compulsory Courses
- ii) Required Courses
- iii) Elective Courses

i. Compulsory Courses:

These are course that must be registered for in a given programme of study and for which the student must earn a pass grade to meet graduation requirements.

ii. Required Courses:

These are prescribed and specific courses that students in specific disciplines must register for and may not have to earn a pass grade but must earn a minimum score of 30% to meet graduation requirements.

iii. Elective Courses:

Elective courses are usually optional in nature. These are courses that broaden the students' understanding in particular aspects of specific disciplines. These course also enable students to make up graduation requirements in term of credit unit and pass grade must be earned in them.

Name Of Staff	Rank/Designation/Salary Scale/Date of First Appointment	Tenured	Qualification Date Obtained Membersh Professional Association No of Publicati
Dr. Reward K. Douglas	Senior Lecturer 5/3 2018	Tenured	B. Eng., 2007, NDU M.Sc 2014, Cranfield PhD. 2018, Cranfield
Engr. Prof. Ogoni A. Humphrey	Professor 7/10 LT/RUST 1983	Tenured	MSc. 1981, PhD 1998 Member. AIChE, NSE, NSChE COREN
Engr. Prof . Zekieni Robert Yelebe	Professor 7/2 LT/RSUST 2002	Tenured	B.Tech 2000, M.Tech 2004, PhD 2010. COREN, MNSE
Engr. Dr. Salome T. Torubeli	Professor 7/3 2000	Tenured	B.Tech 1998, RSUST; MRes 2002, univers Nottingham, UK; PhD 2013, University Nottingham, UK. MNSE, SPE; RCOREN (R. 260) 38 Publications
Engr.Woyengi-Ebinipre Burubai	Professor 7/3		B.Tech 2000, RSUST; M.Tech.2005RUST; 2010, RUST; ASABE, COREN
Engr. Dr Yousuo Digieneni	Associate Professor 5/4 2004	Tenured	B.Tech 1997, RSUST M.Eng. 2004 Uniport PhD 2014, Uniben COREN
Engr. Dr. Ketebu Orlando	Associate Professor 5/6 2002	Tenured	B.Eng 1999, Uniport M.Tech, 2006 RUST PhD 2014 Univ. of Newcastle

List of academic staff in the department

			UK. COREN registered R.16.25 9 25 publications
Dr. Kenneth P. Kelvin	Senior Lecturer 5/3 2008	Tenured	B.Eng. 2006 NDU, M.Sc 2010 University Nottingham UK; PhD 2019 University of Sussex; MNSE, COREN
Dr. Keneth Preye Aina	Senior Lecturer 5/3 2010	Tenured	B.Eng, 2006 NDU; M.Sc 2010 University Nottingham UK; Ph.D 2018, University o Town South Africa; RCORE; Several Publications.
Dr. Abraham Tomvie	Senior Lecturer 5/3 2002		B.Eng1998, RUST; M.Sc.2003Coventry U 2016, Coventry UK.
Engr. Dr. Matthew D. Castro	Senior Lecturer, 5/3 2004		B.Tech,2000 RUST; MSc 2005 Cranfield I UK; Ph.D 2014 Cranfield Univ. UK
Engr. Dr. David W Ebregbe	Senior Lecturer 5/3 2002		B.Eng1987 RUST; M.Sc.2002, Loughbord UK. PhD 2013, Harbin Instituet of Tech.,
Engr. Dr. Olisa Yemi Philip	Senior Lecturer 5/3 2006		B.Eng1997, FUTY; M.Sc.2002UNILAG; Ph 2016, UNIBEN
Engr. Dr. Ebizimor A. Kiridi	Senior Lecturer 5/3		B.Sc (1999), M.Sc. (2006), Ph.D (2013) COREN
Engr. Dr. Kotingo Kelvin	Senior Lecturer 5/3		B.Sc. (2000), M.Sc. (2006). Ph.D (2022)
Engr. Dr.T. J. Ajoko	Senior Lecturer 5/3, 2010		B.Eng. (2007),M.Sc (2010), PhD (2020), RCOREN
Engr.Dr. Igbani Sunday	Senior Lecturer 5/4 2006		B. Tech (RUST) 2002 MSc(Coventry) , PhD (NDU) 2022
Dr. R.T Samuel	Lecturer I 4/8 2000	Tenured	B.Tech 1998 RUST; MRes 2002 University Nottingham, UK PhD Cranfield University 2016, UKMNSE,
Dr. Komonibo Ebuindu	Lecturer I 4/8 2018	Tenured	B.EngM.Sc PhDMNSE COREN
Dr. DudunaWilliam-Porbeni	Lecturer I 4/2	Tenured	B.Eng 2006, NDU; M.Sc. 2013, Surrey, UK RCOREN

	2010		
Engr. Nelson A. Osaribie	Lecturer II	Tenured	B.Eng. 2006 NDU
	4/2		M.Sc. 2013, Ahmadu Bello Uni. Zaria. RCC
	2010		
Engr. Dr. Ann A. J.O	Lecturer I		BSc. 2006, Univ. Of Cal; MSc 2015 Londor
			Bank Univ; Ph.D 2019, Univ. Of Port Harc
	4/3, 2019		
Mr. Ogbereyo Sunny	Lecturer II	Tenured	B.Eng. 2015, NDU
	2018		MSc, 2018
	3/3		
	2018		
Engr. Joseph Alah	Lecturer II		B.Eng. 2008 NDU; M.Sc. 2015, Uni. RCO
	3/6		
	5,0		
	2010		
Engr. Ifidi Wonyengitari-elado	Lecturer II	Tenured	B.Eng. 2009, NDU
	2018		M.Sc 2014
	3/3 2018		
	2018		
Mr. Fetepigi Seigha	Lecturer II	Contract	B. Eng 1985, USA
	3/5		M.Sc 1987, USA
			Wist 1907, 05A
	OTHERS	I	
Mr. ThankGod A. Atukpa	Graduate Assistant		B.Eng. 2021, NDU
	1/2; 2023		
Mr. Edoumiekumo O. Precious	Graduate Assistant		B.Eng. 2021, NDU
	1/2; 2023		

SUMMARY: Male = 25; Female = 3

100 LEVEL ENGINEERING COURSES

ENGINEERING GRAPHICS I (FCE 131)

Course Time ta	Course Time table				
Course	Name of Lecturers:	Class Level:	Semester:	Duration:	
Title/Code:					
Engineering	Engr. Prof. E. A.	100 Level	First Semester	November, 2022	
Graphics	Ogbonnaya,			– March, 2023	

I/FCE 131	Engr. Dr. B. E. Yabefa			
	Engr. B. J. Jonathan			
Credit Unit: 2	Credit hours: 8	Class Timing:	Tuesdays 12pr	n – 4pm
			Wednesdays 2p	m – 6pm

Course Description/Objectives

Drawing in general is an art of picturing an imagination. Thus, engineering drawing is the scientific representation of an object according to standardized requirement. The engineering graphics language had its existence when it became necessary to build new structures and create new machines. The absence of graphics language, the ideas on technical matters have to be conveyed by speech or writing, both are unreliable and difficult to understand in the manufacturing and production industries. It is also may produce lots of manufacturing errors hence, the engineering graphics as a course is aimed to cover these limitations. The importance of engineering drawing cannot be over emphasized, without engineering drawing, it would have been impossible to produce objects like automobiles, machines components, etc. Therefore, the objectives of the course is to hence students with the knowledge of object construction with lay-down engineering principles.

Course Outlines

Use of draughting instruments

Lettering dimensioning layouts.

Constructions of geometrical figures, comics, etc.

Graphical calculus and applications.

Development, intersection of curves and solids, tangents etc.

Projections - Orthographic and Isometrics, sectional views.

Recommended textbooks

"Technical Drawing", by B. A. Ozogu. Sadah Printing and Publishing, Port-Harcourt, Rivers State, Nigeria

"Engineering Drawing (Plane and Solid Geometry)", by N. D. Bhatt and V. M. Panchal.

Charotas Publishing House PVT.LTD, Gujurat, India

"Machine Drawing", by K. L. Narayana, P. Kannaiah and K. V. Reddy. New Age International

Publishers, New Deilhi, India

	rse Learning Outcome			-	
S/N	CLO	Domain	Taxonomy Level	PEO	Assessment
1	Recognize the fundamental concepts of engineering drawing and graphics	Cognitive	2	1	Classwork + Assignment + Test + Attendance
2	Have good knowledge of design and application in solving simple and complex engineering problems	Cognitive	3	2	Classwork + Assignment + Test + Attendance
3	Analyze engineering models for strength and cost production	Cognitive	4	3	Classwork + Assignment + Test + Attendance
4	Show skills of engineering objects in actionable solid models for simulation analyses	Cognitive	5	2	Classwork + Assignment + Test + Attendance

DETAII	DETAILED LECTURE PLAN				
Week	Lecture	Course Content to be Covered	References		
No					
1	1-2	Use of draughting instruments	"Technical Drawing", by B.		
			A. Ozogu. Sadah Printing		

2-3	3 - 4	Lettering dimensioning layouts	and Publishing, Port-
4-5	5-7	Constructions of geometrical figures, comics, etc	Harcourt, Rivers State,
6-8	8-10	Graphical calculus and applications	Nigeria
9-11	11-12	Development, intersection of curves and solids,	-
		tangents etc.	"Engineering Drawing
12 - 14	13 – 15	Projections – Orthographic and Isometrics,	(Plane and Solid
		sectional views	Geometry)", by N. D. Bhatt
15	16-17	Revision	and V. M. Panchal. Charotas
			Publishing House PVT.LTD,
			Gujurat, India
			"Machine Drawing", by K.
			L. Narayana, P. Kannaiah
			and K. V. Reddy. New Age
			International Publishers,
			New Deilhi, India
16	Final Sen	nester Examination	

ENGINEERING GRAPHICS II (FCE 132)

Course Time ta	able			
Course	Name of Lecturers:	Class	Semester:	Duration:
Title/Code:		Level:		
Engineering	Engr. Prof. E. A.		Second	November, 2022
Graphics	Ogbonnaya,	100 Level	Semester	– March, 2023
II/FCE 132	Engr. Dr. B. E. Yabefa			
	Engr. B. J. Jonathan			
Credit Unit: 2	Credit hours: 8	Class Timing	g: Tuesdays 12pr	n – 4pm
			Wednesdays 2p	om – 6pm

Course Description/Objectives

Engineering graphics is a drawing course which enables an effective communication medium in engineering industries to furnish all needed information required for the manufacture and assembly of machine components and parts. It is understood by all with the knowledge of basic engineering principles of drawing. Thus, by this means, the shape, size, finish, colour and the construction of any object is described accurately, corrected and clearly. Hence, engineering graphics II is to enhance students the ability to use pictorial and freehand sketching, architectural drawing, etc.

Course Outlines

Pictorial/Freehand sketching

Conventional practices.

Architectural drawing.

Advance topics in auxiliary and sectional views

Developments, intersection of surfaces, projections, etc.

Recommended textbooks

"Technical Drawing", by B. A. Ozogu. Sadah Printing and Publishing, Port-Harcourt, Rivers

State, Nigeria

"Engineering Drawing (Plane and Solid Geometry)", by N. D. Bhatt and V. M. Panchal.

Charotas Publishing House PVT.LTD, Gujurat, India

"Machine Drawing", by K. L. Narayana, P. Kannaiah and K. V. Reddy. New Age International Publishers, New Deilhi, India

Course Learning Outcomes (CLOs)

S/N	CLO	Domain	Taxonomy Level	PEO	Assessment
1	Understanding the basic language of engineering drawing and graphics	Cognitive	2	1	Classwork + Assignment + Test + Attendance
2	Design simple architectural drawings	Cognitive	6	2	Classwork + Assignment + Test + Attendance
3	Analyze engineering drawings using	Cognitive	4	3	Classwork + Assignment + Test + Attendance

	various views		
L			

Week	Lecture	Course Content to be Covered	References
No			
1	1-2	Pictorial/Freehand sketching	"Technical Drawing", by B. A.
			Ozogu. Sadah Printing and
2-3	3 - 4	Conventional practices	Publishing, Port-Harcourt,
4-5	5-8	Architectural drawing	Rivers State, Nigeria
		Plans	
		Views (front, back and sides)	"Engineering Drawing (Plane
		Structural drawings	and Solid Geometry)", by N. D.
		Mechanical and Electrical drawings	Bhatt and V. M. Panchal.
6-7	9-10	Advance topics in auxiliary and sectional	Charotas Publishing House
		views	PVT.LTD, Gujurat, Indi
		Introduction of sectional views	
		Full sectioning	"Machine Drawing", by K. L.
		Half sectioning	Narayana, P. Kannaiah and K.
		Auxiliary sections	V. Reddy. New Age
8-10	11 - 13	Developments	International Publishers, New
		Introduction	Deilhi, India
		Development of objects	
		Cylinder, square prism, polygons	
		Cone, oblique hexagonal pyramid, truncated	
		cone, etc	
11	14	Intersection of surfaces	-
12 - 14	15 - 18	Projections	-
		Orthographic Projections – Introduction	
		First angle projection	
		Third angle projection	
		Axonometric Projections – Introduction	
		Axonometric representation	

		Conventional isometric projections	
		Circles and curves drawn in Isometric views	
		Oblique Projections – Introduction	
		The axes, chice of angles,	
15	19-20	Revision	
16	Final Sei	mester Examination	

200 LEVEL ENGINEERING COURSES

ENGINEERING GRAPHICS III (FCE 261)

Course Time table	e			
Course	Name of Lecturers:	Class Level:	Semester:	Duration:
Title/Code:				
Engineering	Engr. Prof. E. A.	200 Level	First Semester	November, 2022
Graphics III/FCE	Ogbonnaya			– March, 2023
261	Engr. Dr. B. E. Yabefa			
	Engr. B. J. Jonathan			
Credit Unit: 2	Credit hours: 4	Class Timing	: Tuesdays 12	2pm – 2pm
			Thursday 12	2pm – 2pm

Course Description/Objectives

Engineering drawing is a critical aspect of mechanical engineering, as it is the fundamental need to develop the design and assembly of a machine. While the interpretation of a component in terms of sketching can be done in various methods related to descriptive Geometry. The focus of this course is to hence students on presentation drawings of various kinds such as gears, cam profiles, etc. It also enables students on different engineering design drawings.

Course Outlines

Introduction to limits.

Fits and tolerance.

Surface roughness determinations.

Drawing methods for cam profiles.

Presentation of types of gears. Drawing of various types of gears.

Assembly drawing of elements. Sub-assembly drawing of elements.

Workshop drawing correction. Modification of drawings symbols.

Reading of blueprints. Geometrical Constructions. Principles of Tangency. Orthographic

Projections. Sectional views. Dimensioning.

Recommended textbooks

"Technical Drawing", by B. A. Ozogu. Sadah Printing and Publishing, Port-Harcourt, Rivers

State, Nigeria

"Engineering Drawing (Plane and Solid Geometry)", by N. D. Bhatt and V. M. Panchal.

Charotas Publishing House PVT.LTD, Gujurat, India

"Machine Drawing", by K. L. Narayana, P. Kannaiah and K. V. Reddy. New Age International Publishers, New Deilhi, India.

Cou	rse Learning Outcom	es (CLOs)			
S/N	CLO	Domain	Taxonomy	PEO	Assessment
			Level		
1	Define the basis of	Cognitive	1	2	Classwork + Assignment +
	limits, fits and				Test + Attendance
	tolerance				
2	Draw the various	Cognitive	6	4	Classwork + Assignment +
	methods of cam				Test + Attendance
	profiles				
3	Describe the	Cognitive	4	4	Classwork + Assignment +
	various types of				Test + Attendance
	gears and their				
	drawing techniques.				
4	Explain drawing	Cognitive	3	4	Classwork + Assignment +
	elements and apply				Test + Attendance
	CAD in				
	engineering				
	drawing				

Week No	Lecture	Course Content to be Covered	References
1	1	Introduction to limits	"Technical Drawing", by B.A. Ozogu. Sadah Printing
2	2 - 3	Fits and tolerance	and Publishing, Port-
3-4	4-5	Surface roughness determinations	Harcourt, Rivers State,
5-6	6-11	Drawing methods for cam profiles	Nigeria
7-8	12-14	Presentation of types of gears. Drawing of various types of gears	"Engineering Drawing
9 – 10	15 – 17	Assembly drawing of elements. Sub-assembly drawing of elements	(Plane and Solid Geometry)", by N. D. Bhatt
11	18	Workshop drawing correction. Modification of drawings symbols	and V. M. Panchal. Charotas Publishing House PVT.LTD,
12	19	Reading of blueprints. Geometrical Constructions. Principles of Tangency	Gujurat, India
13	20-21	Orthographic Projections.	"Machine Drawing", by K.
14		Sectional views. Dimensioning	L. Narayana, P. Kannaiah
15	22 - 23	Revision	and K. V. Reddy. New AgeInternational Publishers,New Deilhi, India

ENGINEERING STATICS (FCE 265)

Course Time table					
Course	Name of Lecturers:	Class Level:	Semester:	Duration:	
Title/Code:					
Engineering	Engr. Prof. A. N.	200 Level	First Semester	November, 2022	
Statics/FCE 265	Okpala,			– March, 2023	
	Engr. Dr. T. J. Ajoko,				
	Engr. G. Banje				
Credit Unit: 3	Credit hours: 4	Class Timing: Mondays 12pm – 2pm			

	Wednesdays 12pm – 2pm				
Course Description/Objectives					
The course teaches students the	e concept of engineering statics. The student will be introduced to				
ideas of applied loads in different	ent static engineering materials and the behaviour of the materials				
under the load application. It to	eaches load application in equilibrium condition, different kind of				
force systems on structures like	e frames, trusses, etc. It also describes the action of shear forces and				
bending moment on engineering	g components. This course familiarizes students with the principles				
of static equilibrium by apply	ying Newton's laws of motion to solve engineering problems.				
Emphasis is placed on drawing free body diagrams and self-checking strategies.					
Course Outlines					
Apply Newton's laws of motion	n on problems of engineering statics.				

Identify the different force action on engineering components.

Analyse different force systems, their resultant, magnitude and direction.

Determine shear force and bending moment analysis with their corresponding diagrams.

Solve simple problems involving friction between surfaces and moment of inertia on plane figure, composite bodies, etc

Recommended textbooks

"Engineering Mechanics", by D.S. Kumar. S.K Kataria & Sons Publishers of Engineering and Computer Books, New Delhi, India

"Engineering Mechanics – Statics", by E.W. Nelson, C.L. Best, W.G. McLean, M.C. Potter. Tata McGraw Hill Education Private Limited, New Delhi, India

Cour	Course Learning Outcomes (CLOs)				
S/N	CLO	Domain	Taxonomy	PEO	Assessment
			Level		
1	Apply Newton's	Cognitive	3	1	Classwork + Assignment +
	laws of motion on				Test + Attendance
	problems of				
	engineering statics.				

2	Describe the	Cognitive	2	1	Classwork + Assignment +
	concept of				Test + Attendance
	mathematical				
	modelling to				
	Engineering				
	problems.				
3	Analyse forces to	Cognitive	4	1	Classwork + Assignment +
	vertical and				Test + Attendance
	horizontal				
	components, define				
	and classify force				
	systems.				
4	Differentiate	Cognitive	2	1	Classwork + Assignment +
	between shear force				Test + Attendance
	and bending				
	moments, the types				
	of friction and their				
	application to				
	engineering				
	equipment.				
5	Calculate problems	Cognitive	5	1	Classwork + Assignment +
	in moment of				Test + Attendance
	inertia for plane				
	figures and				
	composite bodies.				

DETAILED LECTURE PLAN					
Week	Lecture	Course Content to be Covered	References		
No					
1	1-2	Basic Concepts – Newton's Law of Motion	Engineering Mechanics by		
		First Law	D.S. Kumar. S.K Kataria &		
		Law of Inertia	Sons Publishers of		

		Second Law	Engineering and Computer
		Third Law	Books, New Delhi, India
		Mathematical Modelling	
2-3	3 - 5	Force Systems	Engineering Mechanics –
		Colinear force system	Statics by E.W. Nelson, C.L.
		Coplanar and spatial force system, Non-coplanar	Best, W.G. McLean, M.C.
		force system	Potter. Tata McGraw Hill
		Parallel and Non-parallel, Like and unlike force	Education Private Limited,
		systems, etc.	New Delhi, India
		Equilibrium Condition and Resultant of forces.	
4-5	6-8	Shear Forces and bending moments in beams and	-
		shafts	
6-8	9-11	Trusses and Frames	-
9-11	12-14	Friction between dry surfaces	-
12-14	15-18	Moment of Inertia, plane figures and composite	-
		bodies.	
15	19-20	Revision	
16	Final Se	mester Examination	1

ENGINEERING DYNAMICS (FCE 262)

Course Time table	Course Time table				
Course	Name of Lecturers:	Class Level:	Semester:	Duration:	
Title/Code:					
Engineering	Engr. Dr. Agonga	200 Level	Second	April, 2023 –	
Dynamics/FCE	Oyinbonogha Fred		Semester	July, 2023	
262	Engr. Dr. Otuami				
	Obiga				
Credit Unit: 3	Credit hours: 4	Class Timing	: Mondays 12am	– 2pm	
		Wednesdays 2pm – 4pm			

Course Description/Objectives

Dynamics is a branch of mechanics that deals with the motion of bodies under the action of forces. The two distinct aspects of dynamics are kinematics and kinetics. In this course the focus will be on 2D dynamics, hence students are expected to learn 2D kinematics and kinematics with adequate attention given to real life application.

Course Outlines

1. Plane kinematics and kinetics of particles.

2. Kinetics of particle; Newton's laws of motion.

- 3. Work and Energy, conservation of energy and momentum, fields of forces,
- 4. Impact coefficient of restitution.
- 5. Kinetics of system of particles.
- 6. Generalized Newton's second law, steady mass flow and variable mass rocket motion.
- 7. Plane kinematics and kinetics of rigid bodies.
- 8. 3D dynamics of rigid bodies, gyroscopic motion and gyroscopic stabilization.

RECOMMENDED TEXTBOOKS

- 1 Engineering Mechanics Dynamics J.L. Meriam and L.G. Kraige (6th edition)
- 2 Engineering Dynamics A comprehensive introduction, N. Jeremy Kasdin and Derek A. Paley

Cour	rse Learning Outcome	s (CLOs)			
S/N	CLO	Domain	Taxonomy	PEO	Assessment
			Level		
1	To understand and	Cognitive	3	1	Classwork + Assignment +
	analyze 2D				Test + Attendance
	kinematics and				
	kinetics dynamics				
	systems.				
2	Application of	Cognitive	2	1	Classwork + Assignment +
	knowledge of				Test + Attendance
	vectors in solving 2D				
	kinematics and				
	kinetics dynamics				
	problems.				

3	To understand the	Cognitive	2	1	Classwork + Assignment +
	different types of				Test + Attendance
	motion, impact and				
	collision				
4	Application of	Cognitive	4	1	Classwork + Assignment +
	Newton's 2nd Law				Test + Attendance
	in solving dynamics				
	problems.				
5	Use of energy	Cognitive	5	1	Classwork + Assignment +
	method in solving				Test + Attendance
	dynamics problems.				

DETAII	LED LEC	TURE PLAN	
Week	Lecture	Course Content to be Covered	References
No			
1	1-2	BASIC CONCEPTS OF ENGINEERING	1 Engineering Mechanics
		DYNAMICS	Dynamics J.L. Meriam
		Introduction to engineering dynamic	and L.G. Kraige (6th
		Define and evaluate basic terms associated	edition)
		with Engineering Dynamics	
		Kinematics of a particle	2. Engineering Dynamics
		Kinetics of a particl	A comprehensive
		Newton's Laws of motion	introduction, N. Jeremy
2-3	3 - 5	RECTILINEAR AND CURVILINEAR	Kasdin and Derek A.
		MOTION	
		Displacement, velocity and acceleration	
		Graphical representation	
		Rectilinear and curvilinear motion	
		Equations of rectilinear motion	
		Motion under gravity	
		Curvilinear motion	

	6 0	
4 – 5	6 – 8	PROJECTILES
		Projectile motion
		Equations of projectile path
		Projection on an inclined plane
6-8	9-11	COLLISION OF ELASTIC BODIES
		Collision of Elastic Bodies
		Types of impact
		Elastic and Inelastic impact
		Conservation of momentum
		Newton's Law of Collision: Coefficient of
		restitution
		Loss of Kinetic energy during impact
		Oblique-Central Impact
9-11	12-14	KINETICS: IMPULSE MOMENTUM,
		WORK
		AND ENERGY
12 – 14	15-18	KINETICS OF ROTARY MOTION
15	19 – 20	Revision
16	Final Sen	mester Examination

FLUID MECHANICS I (FCE 232)

Course Time tabl	e					
Course	Name of Lecturers:	Class	Semester:	Duration:		
Title/Code:		Level:				
Fluid Mechanics	Engr. Dr. Y. P. Olisa		Second	April, 2023 –		
I/FCE 232	Engr. Dr. A. E. Amos	200 Level	Semester	July, 2023		
	Engr. Goodnews Arobe					
Credit Unit: 3	Credit hours: 4	Class Timing	g: Wednesday 8a	m – 10am		
Thursday 10am – 12pm						
Course Description/Objectives						

Fundamentals of fluid mechanics introduces students to the basic concept of fluid mechanics such as fluid characteristics, fluid properties, dimensional analysis and unit. It gives the basic principles and theories of fluid static condition and fluid motion. For fluid static, students will understand the pressure, buoyancy forces in submerged bodies and stability of bodies in fluid. Fluid in motion, students are taught the basic laws of conservation of mass, energy and momentum. Bernoulli's equations and momentum equations as application to compressible and incompressible flows. Students will be able to describe and differentiate between a Newtonian and Non-Newtonain fluids, ideal/real friction losses. Students will be introduced to types of flow measurements. Also introduced to analytical application of solving different types of engineering problems.

Course Outlines

Introduction to the properties of fluid mechanics (density, viscosity, etc), fluid characteristics,

Newton's law, hydrostatic laws, dimension measurement and units

Introduction to pressure and pressure measurement.

Introduction and derivation of basic laws, theories and equations fluid flow continuity energy

equation and momentum equation as applicable to fluid flow in real and ideal conditions.

Application of these laws in solving problems with fluid at rest and in motion.

Introduction to fluid flow measurement, pressure, velocity, rate of discharge.

RECOMMENDED TEXTBOOKS

Fluid Mechanics and Hydraulic Machines by R. K. Rajput.

Fluid Mechanics by Douglas J. F. Gasiorek, J. M. Swaffield J. A. and Lynn Jack

Course Learning Outcomes (CLOs)						
S/N	CLO	Domain	Taxonomy	PEOs	Assessment	
			Level			
1	Analyse the	Cognitive	2	2	Classwork + Assignment +	
	properties and				Test + Attendance	
	characteristics of					
	fluid (density,					
	viscosity, etc)					
	Newton's law,					
	hydrostatic laws,					

	dimension				
	measurement and				
	units				
2	analyse pressure	Cognitive	3	1	Classwork + Assignment +
	and pressure				Test + Attendance
	measurement.				
3	Evaluate the	Cognitive	5	1	Classwork + Assignment +
	hydrostatic forces in				Test + Attendance
	fluids				
4	Evaluate the basic	Cognitive	3	3	Classwork + Assignment +
	laws and principles				Test + Attendance
	fluid				

DETAI	DETAILED LECTURE PLAN						
Week No	Lecture	Course Content to be Covered	References				
1	1-2	Introduction to fundamental concept of fluid mechanics, properties of fluid (viscosity, density, specific gravity).	Engineering Mechanics Dynamics J.L. Meriam and L.G. Kraige (6th				
2	3-4	Thermodynamic properties – compressibility and Bulk Modulus vapour Pressure	edition)				
3	5 - 7	Introduction to pressure/measure, pressure head, Pascal law, absolute, Gauge and atmospheric pressure.	Engineering Dynamics A comprehensive introduction, N. Jeremy				
4	8-9	Use of manometers and mechanical gauges for pressure measurement.	Kasdin and Derek A. Paley				
5	10	Introduction to hydrostatic forces on immersed surfaces.	_				
6 – 7	11 – 12	Horizontal and vertical induced surfaces application for problem solving.					
8-9	13 – 14	Introduction to Buoyancy condition of bodies in fluid stability, meta centre, meta-centre height					

		application in solving problems.	
10 - 11	15 - 16	Introduction to fluid types and flows,	
		steady/unsteady, uniform/non-uniform, one, two,	
		three-dimensional flow, rotational/irrotational flow,	
		laminar/turbulent flow,	
		compressible/incompressible flow.	
12 – 13	17 – 19	Fluid dynamics, different heads, derivation of	
		Bernoulli's Euler's Equations for ideal and real	
		fluid.	
14	20	Derivation of momentum equation, application to	
		fluid measurement (flow rate, velocity, pressure)	
15	21 – 22	Revision	
16	Final Sen	nester Examination	

WORKSHOP TECHNOLOGY (FCE 263)

Course Time table	e			
Course	Name of Lecturers:	Class	Semester:	Duration:
Title/Code:		Level:		
Warkshar	Enon Dr. K. Katinga		First Semester	Amril 2022
Workshop	Engr. Dr. K, Kotingo		rirst Semester	April, 2023 –
Technology	Engr. Dr E. Amula	200 Level		July, 2023
(FCE 263)				
		Class Timing	g: Monday 10pm	– 12pm
Credit Unit: 3	Credit hours: 4		Friday 12pm –	2pm

Course Description/Objectives

The course introduces students to the various manufacturing processes, types of patterns and pattern making, molding sand and sand casting operations ,welding processes and various metal forming operations, measuring instruments, forging operations and carpentry and joinery as well as industrial safety and good house-keeping practices

Course Outlines

Types of pattern and pattern making, molding sand, molding process; machine molding.

Ferrous and non-ferrous casting, sand casting, and casting defects.

Arc and gas welding processes, soldering and brazing.

Introduction to lathe; milling, shaping, cutting and drilling operations. Cutting fluids.

Carpentry and joinery processes. Forging, Industrial safety, good house keeping.

Recommended textbooks

A Textbook of Workshop Technology (Manufacturing Processes) By R.S Khurmi and J.K Gupta.

B.S Raghuwanshi (2011) Workshop Technology.Vol 11 (Machine Tools)

Cou	rse Learning Outcome	es (CLOs)			
S/N	CLO	Domain	Taxonomy Level	PEOs	Assessment
1	Identify the principles of pattern making, molding sand, manufacturing processes and metal forming processes.	Cognitive	2	2	Classwork + Assignment + Test + Attendance
2	Description of the fundamentals of production parts by casting techniques, sand casting outlines, ferrous and non-ferrous castings	Cognitive	3	1	Classwork + Assignment + Test + Attendance
3	Evaluation of the Industrial safety practices, good house keeping, carpentry	Cognitive	5	1	Classwork + Assignment + Test + Attendance

4	App	olication o	of	Cognitive	5	3		Classwork + Assignment +
	cutt	ing fluids	,					Test + Attendance
	intro	oduction t	to lathe					
	mac	chine						
5	Des	cription o	of	Cognitive	3	3		Classwork + Assignment +
		ging, engi		U				Test + Attendance
		asurement	-					
		ging, join						
DET	_	ED LECT	-	LAN				
Wee	k	Lecture	Course	Content to	be Cover	red		References
No								
1		1	Introdu	ction to indu	strial safe	ety, PPE,		(1) B.S Raghuwanshi (2011)
			carpent	ry and joiner	ry			Workshop Technology.Vol 11
2		2 - 3	The Stu	dy of patter	ns, types o	of pattern	s and	(Machine Tools)
			pattern	making				
3		4	The Stu	dy of found	ry tools, n	nolding a	nd	(2)A Textbook Of Workshop
			sand mo	nolds			Technology (Manufacturing	
4		5	Introdu	ction to lathe	e and wor	king		Processes) By R.S Khurmi And
			principl	es, milling a	and cutting	g		J.K Gupta.
5		6	Introdu	ction to arc a	and gas w	relding		
			process	es, soldering	, slotting			
6		7-9	Cutting	fluids and t	ypes of cu	ıtting flui	ds	
7 – 9	,	8 – 12	Casting	defects, forging				
10 -	11	13 – 15	Enginee	ering measurements				
12 –	13	16 – 18	Test/co	ntinuos assessment				
14		19 – 20	Practica	l Section				
15		21 – 22	Revisio	n				
16		Final Ser	nester E	xamination				1

300 LEVEL COURSES

CHEMICAL ENGINEERING THERMODYNAMICS (CHE 321)

1. Course Time table				
Course Title/Code:	Name of Lecturers:	Class	Semester:	Duration:
		Level:		
Chemical				
Thermodynamics/CHE	Dr. Rewrad K.		First Semester	April, 2023 –
321	Douglas	300 Level		July, 2023
Credit Unit: 4	Credit hours: 4	Class Timin	g: Tuesdays 12	noon – 2pm
			Wednesday	2pm – 4pm

2. Course Description/Objectives

This course introduces to the need for second Law and calculation of entropy changes. Students are taught thermodynamic potentials; Free energy and functions; Chemical potentials and affinity of reactions; Equilibrium in chemical reaction systems; Equilibrium constant of a reaction. Third Law of thermodynamics; Thermal data; Thermodynamics of electrochemical cells; Work production from chemically reacting systems; Phase relations and thermodynamics of solutions; and Equilibrium in heterogeneous reactions are taught.

3. Course Outlines

- Review of the Second Law of thermodynamics; the nature of the second law; and the statement of the second law of thermodynamics (concept of entropy). Also, processes isobaric, isothermal, adiabatic, polytropic; and work, heat, internal energy, etc. shall be revised. Students shall be taught reversible processes and cycles; heat engines.
- 2. Review of thermodynamic temperature scale; proof that S is a thermodynamic property; know the general equations for the S of ideal gas; S of real gas; and plot temperatureentropy (T-S) diagrams. Calculation of the change in entropy (Δ S). Adiabatic mixing. Derivation of expression for the combined form of the 1st and 2nd Law of thermodynamics.
- 3. The need for the **3**rd Law of thermodynamics; formulation of **3**rd Law; Planck's formulation; apparent exceptions to the **3**rd; and the usefulness of Thermal data.
- 4. Learn free energy: Gibb's free energy (G) changes for a process at known pressures, and also calculate the G at one pressure level if the free energy at the other pressure level is known; define chemical potential, and its mathematical expression. Students will be taught phase relations and thermodynamic of solutions.

- 5. To write equilibrium constant (K) expression (s) using various chemical reactions, and its determination; reaction stoichiometry Gibb's and Planck's functions as criteria of equilibrium in isothermal changes of state at constant pressure. Derivation of Gibbs-Helmholtz Equation and its application.
- 6. Rankine cycle, Carnot cycle etc; their schematic presentations, derivation and calculation of network done.
- 7. The difference between diffusers, nozzles, compressors, expanders, and turbines, etc.; and their applications.

RECOMMENDED TEXTBOOKS

Introduction to Chemical Engineering Thermodynamics, Sixth Edition in SI Units- J.M. Smith;

H.C. Van Ness; and M.M. Abbott.

Introduction to Chemical Engineering Thermodynamics, Second Edition-Gopinath Halder; 2014

Chemical Engineering. An introduction. Morton M. Denn, 2012.

The Beginner's Guide to Engineering. Chemical Engineering. John T. Stimus, 2013.

S/N	CLO	Domain	Taxonomy	PEOs	Assessment
			Level		
1	The application the	Cognitive	3	1	Classwork + Assignment +
	Second Law of				Test + Attendance
	thermodynamics in				
	problem solving				
2	The usefulness of	Cognitive	2	1	Classwork + Assignment +
	Thermal data				Test + Attendance
3	Evaluation of	Cognitive	4	1	Classwork + Assignment +
	various operational				Test + Attendance
	steps of: Rankine				
	cycle, Carnot cycle				
	etc;				
4	Analysis of	Cognitive	2	1	Classwork + Assignment +

4. Course Learning Outcomes (CLOs)

diffusers, nozzles	,	Test + Attendance
compressors,		
expanders, and		
turbines.		

5. DETA	AILED LE	CTURE PLAN	
Week No	Lecture	Course Content to be Covered	References
1	1-2	 Introduction of course contents; and recap of the 1st Law of Thermodynamics. Needs for the 2nd law (limitations of the 1st Law); Basic concepts of heat engines, heat pumps, and refrigerators. 	Introduction to Chemical Engineering Thermodynamics, Sixth Edition in SI Units- J.M. Smith; H.C. Van Ness; and M.M. Abbott.
2-3	3 - 5	Statement of Second Law:1. Kelvin-Planck statement, Clausiusstatement, and equivalence of Kelvin-Planck and Clausius statements.1. Efficiency of Carnot cycle, Carnottheorem, Ideal-gas temperature scale, PV-diagram showing Carnot cycle for an idealgas. Class exercise	Introduction to Chemical Engineering Thermodynamics, Second Edition- Gopinath Halder.
4 – 5	6-8	The concept of entropy and calculations of entropy changes: Entropy- a thermodynamic state function; entropy-at a glance; relationship between entropy and internal energy; relationship between entropy and enthalpy. Calculation of entropy changes-entropy changes in reversible and irreversible processes; entropy at phase change; entropy changes of ideal gases, entropy change with	

		temperature. Class exercise.
6-8	9-11	Mathematical statement of the Second
		Law, and the Third Law: Entropy
		balances for open systems; calculation of
		ideal work. Entropy: microscopic point of
		view; criterion for irreversibility, Clausius
		inequality. Class exercise.
9-11	12 – 14	Free energy functions: Helmholtz free
		energy (work function); Gibb's free energy
		(Gibb's function); Gibb's- Helmholtz
		equation.
12 – 14	15 – 18	1. Free energy functions: General
		equations for differential changes in internal
		energy, enthalpy, and entropy. TdS
		Equations, Heat capacity relations.
		2. Thermal data
15	19 – 20	General Revision and Test.
16	Final Ser	nester Examination

6. EVALUATION CRITERIA					
Component of Assessment	Methods	Marks			
During Semester	Class Seminar/Attendance	10%			
	Assignment	10%			
	Test	10%			
Examination	Semester Examination	70%			
	100%				

Process Calculation (CHE 351)

1. Course Time table					
Course	Name of Lecturers:	Class Level:	Semester:	Duration:	
Title/Code:					

Process Calculation/CHE 351	Engr. Dr. Reward K. Douglas	300 Level	First Semester	November, 2022 – March, 2023
Credit Unit: 3	Credit hours: 3	Class Timing: Tuesdays 10am – 12noon		

2. Course Description/Objectives

In this course students are introduced into the basic definitions: Chemical equations and stoichiometry; combustion; Ideal gas laws; Real gas relationships; Vapour pressure, saturation and humidity. Students are to understand Material balances and do calculations involving different systems- steady state processes involving chemical reaction, stepwise counter-current processes, recycle, bypass, and purge calculations, condensation and abeling. Also students introduced into energy balances and carry out calculations. Calculation of enthalpy changes, without change of phase and for phase transitions are to be carried out. Students are also introduced into combined material and energy balances for steady state and unsteady state processes.

3. Course Outlines

Write and balance chemical equations; determine stoichiometric coefficients in reactions. Determine limited reactants, excess reactants, extent of reaction, conversion, selectivity, and yield in reactions.

Know the difference between steady and unsteady processes. Write material balances: steady state processes involving chemical reactions, and solve problems. Write energy balance equations for processes, and solve problems.

Write combined material and energy balances for steady state and unsteady state processes; and solve problems.

Know how recycle, bypass, and purge work, and their importance in the process industry.

Calculate enthalpy changes involving without change of phase and for phase transitions.

Recommended textbooks

1. Basic Principles and Calculations in Chemical Engineering, 6ixth Edition-David M.

Himmelblau.

S/N	CLO	Domain	Taxonomy Level	PEO	Assessment
1	Determination of	Cognitive	3	1	Classwork + Assignment +
	limited reactants,				Test + Attendance
	excess reactants,				
	extent of reaction,				
	conversion,				
	selectivity, and				
	yield in reactions.				
2	Evaluation of	Cognitive	4	1	Classwork + Assignment +
	conversion,				Test + Attendance
	selectivity, and				
	yield in reactions.				
3	Application of	Cognitive	4	1	Classwork + Assignment +
	recycle, bypass, and				Test + Attendance
	purge in the process				
	industry				
4	To differentiate	Cognitive	4	1	Classwork + Assignment +
	between steady and				Test + Attendance
	unsteady processes.				
5	Application of	Cognitive	5	1	Classwork + Assignment +
	combined material				Test + Attendance
	and energy balances				
	for steady state and				
	unsteady state				
	problems.				

5. DETA	5. DETAILED LECTURE PLAN				
Week	Lecture	Course Content to be Covered	References		

No			
		Introduction	Engineering Mechanics
1	1	Introduction of course contents; Revision	Dynamics J.L. Meriam and
1		on chemical equations and balancing of	L.G. Kraige (6th edition)
		chemical equations.	Engineering Dynamics A
		Chemical equations and stoichiometry	comprehensive introduction, N.
		Meaning and determination of	Jeremy Kasdin and Derek A.
		stoichiometric ratios, and quantity;	Paley
2-3	2-3	Terminologies for application of	
2-3	2-3	stoichiometry: Extent of reaction, limiting	
		reactant, excess of reactant, conversion,	
		selectivity, and yield.	
		Class exercise	
		Combustion, Ideal gas laws, Real gas	
4 – 5	4-6	relationships, Vapour pressure, Saturation,	
4 – 3	4-0	and Humidity.	
		Class exercise	
		Material balances	
		Steady state processes involving chemical	
7 - 8	7-9	reactions, step-wise counter-current	
7 - 0		processes, recycle, bypass, and purge	
		calculations, condensation and abeling.	
		Class exercise	
		Energy balances, Heat capacity, Calculation	
		of enthalpy changes without change of	
9-11	10-12	phase and for phase transitions, and heat of	
		reaction.	
		Class exercise	
		Combined material and energy balances for	
12 – 14	13 – 15	steady state and unsteady state processes.	
		Class exercise	
15	16 - 18	General Revision and Test.	

16	Final Semester Examination	
----	----------------------------	--

6.EVALUATION CRITERIA					
Component of Assessment	Methods	Marks			
During Semester	Class Seminar/Attendance	5%			
	Assignment	10%			
	Test	15%			
Examination	Semester Examination	70%			
	Total	100%			

FLUID PARTICLE TECHNOLOGY (CHE 353)

1. Course Time table						
Course	Name of Lecturer:	Class	Semester:	Duration:		
Title/Code:		Level:				
Fluid Particle	Engr. W. Ifidi ,		First Semester	September, 2023		
Technology/		300 Level		– December,		
CHE 353				2023		
Credit Unit: 3	Credit hours: 4	Class Timing: Tuesdays 12pm – 2pm Thursdays 8am – 12pm (Lab				
Crean Ollit. J						

2. Course Description/Objectives

This is as an introductory course in particle technology. The course describes and explains the fundamentals of fluid-particle mechanics, which are essential for the understanding of numerous industrial fluid-solid processes like packed bed operation, fluidization, sedimentation, filtration, separation of solids from fluids, etc. Along with the fundamentals, industrial applications will also be discussed.

Particle technology is of increasing importance to a wide range of industries, including food, pharmaceuticals, chemicals, minerals, and metals. In these industries, graduates with knowledge

of particle technology have a competitive advantage in product development, quality control and waste minimization.

3. Course Outlines

Identify methods of particle size measurement.

Characterize solid particles by size distribution.

Explain the motion of particles through fluids.

Identify the various flow regimes and their relationship to the drag coefficient.

Develop the general equation for the total force acting on a body in any force field.

Derive Stokes law for the terminal velocity of a particle falling in a fluid.

Design a gravity settling tank,

Explain the principle of centrifugal separation of solids from liquids, and between two liquids of different densities.

Explain fluid flow through packed beds and the hydrodynamics of fluidized beds.

Introduction to drying and dehumidification.

Recommended textbooks.

Martin Rhodes: Introduction to Particle Technology, 2nd Edition: John Wiley & Sons 2008

McCabe W.L, Smith J.C, Harriot P, Unit Operations of Chemical Engineering, 5th Edition: McGraw-Hill, Inc.

Coulson, J. M & Richardson, J. F.: Chemical Engineering Series Vol 2: Particle Technology and Separation Processes, 5th Edition, Butterworth-Heinemann

4. C	4. Course Learning Outcomes (CLOs)						
S/N	CLO	Domain	Taxonomy	PEOs	Assessment		
			Level				
1	Understand flow	Cognitive	2	2	Classwork + Assignment +		
	around immersed				Test + Attendance		
	bodies, Concept of						
	Drag force and						
	boundary layer						
	separation						
2	Analyse the motion	Cognitive	3	2	Classwork + Assignment +		
	of particles in a				Test + Attendance		

	fluid, effect of				
	particle shape and				
	influence of				
	boundaries on				
	terminal velocity				
3	Introduction to	Cognitive	5	1	Classwork + Assignment +
	separation of solids				Test + Attendance
	from fluid, design				
	of gravity settling				
	tank, cyclone, and				
	centrifuge				
4	Fluid flow through	Cognitive	4	3	Classwork + Assignment +
	granular and				Test + Attendance
	packed beds of				
	particles.				
5	Derivation of the	Cognitive	4	2	Classwork + Assignment +
	Carman-Kozeny,				Test + Attendance
	Burke-Plummer				
	and Ergun's				
	equations for				
	pressure drop in a				
	packed bed.				

5. DETAILED LECTURE PLAN						
Lecture	Course Content to be Covered	References				
1	Introduction to the concept of drag force,	1. Theory Martin Rhodes:				
	boundary layer separation and particle	Introduction to Particle				
	classification	Technology, 2nd Edition: John				
2	Derivation of the terminal velocities for	Wiley & Sons 2008				
	Newton's and Stoke's law. Design of the					
	Gravity Settling Tank	2.McCabe W.L, Smith J.C,				
	Lecture 1	LectureCourse Content to be Covered1Introduction to the concept of drag force, boundary layer separation and particle classification2Derivation of the terminal velocities for Newton's and Stoke's law. Design of the				

3	3	Application	of the fundamental principle of	Harriot P, Unit Operations of	
		fluid flow in	n cyclone separation and	Chemical Engineering, 5th	
		centrifugation	on	Edition: McGraw-Hill, Inc	
4	4	Introduction	to hydrodynamic of single-		
		phase flow t	hrough packed beds.	3.Coulson, J. M & Richardson	ι,
5-6	5	The total pro	essure-drop of fluid flow past an	J. F.: Chemical Engineering	
		object.		Series Vol 2: Particle	
		Carman-Ko	zeny, Burke-Plummer and	Technology and Separation	
		Ergun's equ	ation for pressure drop in a	Processes, 5th Edition,	
		packed bed.		Butterworth-Heinemann	
7	5	Introduction	to fluidization and fluidization		
		theory, Calc	culation of pressure drop in		
		liquid and g	as fluidized beds and minimum		
		fluidization	velocity		
8-9	6	Vapor-liqui	d Equilibria, Raoult's law,		
		Dalton's lav	v of partial pressure and		
		determination	on of vapor pressure		
10	7	Equilibrium	Phase Diagram and calculation		
		of the numb	er of trays using the McCabe		
		Thiele Meth	od		
11		Practical Se	ction		
12		Revision			
			Final Semester Examinat	ion	
6. EVA	LUATIO	N CRITERIA	L Contraction of the second seco		
Compor	nent of Ass	essment	Methods	Marks	
During Semester			Classwork	5%	
			Laboratory Practical	10%	
			Test	10%	
			Class Attendance	5%	
Examination Semester Examination			Semester Examination	70%	
Total			1	100%	

SEPARATION PROCESSES 1 (CHE 314)

1.Course Time table						
Course	Name of Lecturer:	Class	Semester:	Duration:		
Title/Code:		Level:				
Fluid Particle	Engr. W. Ifidi,		Second	January 2024 –		
Technology/		300 Level	Semester	March, 2024		
CHE 314						
Credit Unit: 3	Credit hours: 4	Class Timing	ming: Tuesdays 8pm – 10pm			
Credit Olit. 5		Thursdays 8am – 12pm (Lab)				

2. Course Description/Objectives

This course covers the principles and design of large-scale diffusional separation processes in equilibrium-stage and processes mass transfer continuous-contact operations. Throughout emphasis is placed on developing quantitative problem-solving skills that will be essential to practicing graduates. This course introduces the fundamental concepts of equilibrium and rate-based analysis of separation processes and gives examples of relevant separation processes. It introduces the concept and analysis of a unit operation as applied to separation processes and demonstrates the analysis of relevant separation processes by applying mass and energy balance methods. Separation processes are a core part of global chemical engineering, making up a large proportion of capital investment in plants, and are vital to economically produce useful and safe products.

3.Course Outlines

Apply phase equilibria principles to mass transfer problems.

Introduction to the phenomenon of equimolar counter diffusion and heat transfer

Equilibrium Phase diagrams and equilibrium curve.

The concept of bulk flow in mass transfer and diffusion through a stationary gas.

Heat and mass transfer with internal generation

Describe various stage-wise and continuous separation units.

Integrate principle concepts of mass transfer to analyse mass transfer equipment

Analyse and design gas absorption, distillation equipment.

Recommended textbooks

Treybal R. E.: Mass Transfer Operations, 2nd Edition: McGraw-Hill

Er. R.K. Rajput: Heat and Mass Transfer: S. Chand & Company

Binay K. Dutta: Principles of Mass Transfer and Separation Processes

McCabe W.L, Smith J.C, Harriot P, Unit Operations of Chemical Engineering, 5th Edition:

McGraw-Hill

	4.Course Learning Outcomes (CLOs)							
S/N	CLO	Domain	Taxonomy	PEOs	Assessment			
			Level					
1	Understand the	Cognitive	2	2	Classwork + Assignment +			
	principles for				Test + Attendance			
	designing selected							
	separation units							
	including distillation							
	columns, gas							
	absorption columns,							
	extraction processes,							
	washing and							
	leaching processes,							
	membrane processes							
	and adsorption							
	columns.							
2	Understand and	Cognitive	2	1	Classwork + Assignment +			
	explain the				Test + Attendance			
	fundamental							
	principles involved							
	in these separation							
	processes based on							
	equilibrium and							
	mass transfer							
	processes							

3	Perform analysis and	Cognitive	5	1	Classwork + Assignment +
	size separation				Test + Attendance
	processes using				
	concepts including				
	mass and energy				
	balance,				
	thermodynamics,				
	heat and mass				
	transfer, fluid				
	mechanics, and				
	phase equilibria.				
4	Demonstrate skills	Cognitive	4	3	Classwork + Assignment +
	in assessment of				Test + Attendance
	separation unit				
	performance and				
	optimisation				
5	Understand and read	Cognitive	4	3	Classwork + Assignment +
	diagrams and tables				Test + Attendance
	such as phase				
	diagrams,				
	equilibrium curve.				

Week	Lecture	Course Content to be Covered	References
No			
1	1	Heat and Mass Transfer (Fick's law and	1. Treybal R. E.: Mass Transfer
		Fourier's law	Operations, 2nd Edition:
		Simple transfer of transferent property &	McGraw-Hill
		the concept of tortuosity	
		Role of the Area presented for transfer of	2. Er. R.K. Rajput: Heat and
		the transferent property.	Mass Transfer: S. Chand &
			Company

2 - 3	2	Heat and mass transfer with internal	
		generation,	3. Binay K. Dutta: Principles of
		Example application to a cylinder in which	Mass Transfer and Separation
		heat is internally generated/mass is	Processes
		internally generated during a first order	
		chemical reaction.	4. McCabe W.L, Smith J.C,
4-5	3	Vapor-Liquid Equilibria	Harriot P, Unit Operations of
		Raoult's law	Chemical Engineering, 5th
		Henry's law	Edition: McGraw-Hill
		The Temperature-Composition diagram and	
		how it is obtained.	
		Determination of the bubble point and dew	
		point for a given liquid composition x , or a	
		given vapor composition y.	
		Equilibrium curve	
		Determination of the minimum number of	
		theoretical plates	
6-7	4	Description of separation processes:	
		stagewise contacting processes, cascades,	
		co-countercurrent flows	
8-9	5	Membrane separation processes:	
		Applications to Reverse Osmosis &	
		Dialysis	
		Knudsen diffusivity	
		Molecular diffusivity	
10		Practical Section	
11		Revision	
		Final Semester Examina	tion

6.EVALUATION CRITERIA				
Component of Assessment	Methods	Marks		
During Semester	Classwork	5%		

	Laboratory Practical	10%
	Test	10%
	Class Attendance	5%
Examination	Semester Examination	70%
Total		100%

FUNDAMENTALS OF PETROLEUM ENGINEERING (CHE 311)

1. Course Time table						
Course Title/Code:	Name of Lecturers:	Class Level:	Semester:	Duration:		
Fundamentals of Petroleum						
Engineering (CHE 311)	Engr. Dr. Duduna	300 Level	First			
	William-Porbeni		Semester			
		Class Timing:	I			
Credit Unit: 3	Credit hours: 4	Monda 8:00am to10:00am.				
		Wednesday 8.0	00am to 10.00ar	n.		

2. Course Description/Objectives

Introduction to petroleum engineering is a critical and fundamental course in Chemical Engineering study. To produce Chemical Engineering graduates going into oil and gas industries and research in the petroleum oil and gas fields, the course is designed to expose students to the science of hydrocarbon crude formation, reservoirs, drilling, processing and storage of crude petroleum. The topics covered in the course will introduce students to various activities related to the production of hydrocarbons, crude oil or natural gas.

It further introduces the chemical engineering undergraduate students to the fundamental terminologies and concepts from geology, geophysics, drilling, production, and reservoir engineering. It covers upstream sector of the oil and gas industry, which are the activities of finding and producing oil and gas.

This course is designed to introduce the student the broad understanding of the engineering technology needed to produce oil and gas. The learning outcomes will afford students with the basic understanding of the concepts of crude oil and gas formation, reservoir geology, wellhead and drilling operations and The course objectives and learning outcomes are outline below.

3. Course Outline

Introduction to the origins and occurrence of petroleum and gas.

Oil exploration methods.

Drilling rigs and drilling bits.

Blowout preventers and drilling fluids.

Finishing techniques.

Off-shore drilling; Well completion, Logging, petroleum production.

Stabilization of petroleum - Oil, gas and water separation.

Basic tests on petroleum quality.

Petroleum transport and storage.

4.Co	urse Learning Outcome	s (CLOs)			
S/N	CLO	Domain	Taxonomy Level	PEOs	Assessment
1	Understand the basic concepts of petroleum engineering and crude oil and gas generation.	Cognitive	2	6	Classwork + Assignment + Test + Attendance
2	Identify the parameters controlling petroleum occurrence, migration, entrapment and oil exploration methods.	Cognitive	3	1	Classwork + Assignment + Test + Attendance
3	Articulate and utilize knowledge on reservoir types, porosity, permeability, rock and fluid interaction.	Cognitive	5	4	Classwork + Assignment + Test + Attendance

4	Demonstrate an	Cognitive	2	1	Classwork + Assignment +
	understanding of the				Test + Attendance
	types of oil rigs, well				
	control, drilling				
	procedures, cementing				
	operation, directional				
	drilling, and drilling				
	problems.				
5	Analyse options and	Cognitive	3	2	Classwork + Assignment +
	Select the appropriate				Test + Attendance
	procedure for drilling				
	operations.				
6	Demonstrate an	Cognitive	5	6	Classwork + Assignment +
	understanding of				Test + Attendance
	prevention and control				
	strategies in cases of				
	drilling problems.				
7	Utilize knowledge on	Cognitive	4	5	Classwork + Assignment +
	crude oil treating,				Test + Attendance
	transportation and				
	storage and an				
	understanding of				
	marketing and sale of				
	oil.				

5. DETA	5. DETAILED LECTURE PLAN						
Week	Lecture	Course Content to be Covered	References				
No							
1	1	Introduction: What is Petroleum Engineering?					
		Generation of Petroleum-diagenesis,	Fanchi, J.R. and				
		catagenesis and metagenesis. Chemical					

		Composition of Petroleum and Petroleum	Christiansen, R.C. (2016).
		Products.	Introduction to Petroleum
2	2-3	Geology and Exploration: Rock Types,	Engineering. (1 st ed.) John
		Parameters Controlling Petroleum Occurrence.	Wiley & Sons, Inc.
		Migration of Petroleum. Entrapment of	Hoboken, New Jersey.
		Petroleum.	Akpoturi. P., Okotie, S.,
3	3	Oil Exploration Methods. Surface geology,	Ogbarode, S. and Ofesi, S.
		geophysical exploration. Well correlation.	(2016) Introduction to Oil
			and Gas Operation. M&J
4	4	Rock and Fluid Properties: Reservoir Rock	Grand Orbit
		Characteristics. Porosity. Permeability. Rock	communications ltd. No
		and Fluid Interaction. Type of Reservoir.	12/14 Njemanze street
		Recovery.	mile1, Diobu, Port
5	5	Drilling Operations: Types of Oil Rigs. Rotary	Harcourt, Rivers State.
		Drilling. Well Control. Drilling Procedure.	
6	6-7	Formation Evaluation: Mud Logging. Open-	
		hole Logging. Logging While Drilling. Cased	
		Hole Logging.	
7-9	8-9	Well cementing: primary cementing process,	
		squeeze cementing. Plug cementing. Functions	
		of cement. Well Completion and Stimulation:	
		What is Well Completion?	
10-11	10-11	Well Completion and Stimulation contd:	
		Setting Production Casing and tubing.	
		Installing the Christmas Tree. Types of Well	
		Completion. Factors Influencing Well	
		Completion Selection. Well perforation. Well	
		Stimulation.	
12 – 13	11-12	Production: Introduction. Flowing Wells.	
		Artificial Lift. Oil Treating and processing	
		techniques.	
		Classification of separators. Storage and Sale	

10	15	Final Semester Examination	
15	13	Revision	
14	12	Oil and gas transportation.	
		of Oil. Salt Water Disposal	

6.EVALUATION CRITERIA					
Component of Assessment	Methods	Marks			
During Semester	Class Seminar/Attendance	10%			
	Assignment	10%			
	Test	10%			
Examination	Semester Examination	70%			
	Total	100%			

Corrosion Engineering (CHE 362)

1. Course Time table					
Course Title/Code:	N	ame of Lecturers:	Class	Semester:	Duration:
			Level:		
Corrosion					
(CHE	Eı	ngr. Dr. Duduna		Second	April, 2023
362)	W	illiam-Porbeni	300 Level	Semester	– July, 2023
			Class Timin	g: Monday 8:00a	um to 10:00
Credit Unit: 2		Credit hours: 4	am. Friday 12.00am to		
		Credit nours. 4	2.00pm.		
			l		

2. Course Description/Objectives

Course objectives - The main objective of this course on corrosion engineering is to:

Introduce and define the underlying concepts and science of corrosion.

To offer a background in corrosion science and its applications in chemical and process industries.

Introducing the basic principles of corrosion, corrosion damage and its classification.

Studying the principles of electrochemical reactions.

Identification of corrosion mechanisms.

Studying the methods of corrosion monitoring, detection, prevention and control.

3. Course Outlines

1. Basic concepts of corrosion.

- 2. Classification of corrosion processes.
- 3. Nature of films, scales and corrosion products of metals.
- 4. Effects of metallurgical structure on corrosion.
- 5. Effects of environment on corrosivity, effects of mechanical factors.
- 6. Corrosion control: cathodic and anodic protection, metallic paint coatings.
- 7. Corrosion testing, monitoring and inspection.

Recommended textbooks

Hand Book of Corrosion Engineering. Roberge, P.R. 1999. (Mcgraw-Hill, 2000).

Corrosion Inhibitors Principles and Applications. Sastri, V.S. 1998 (John Wiley and Sons, 2001)

Fontana, M.G. Corrosion Engineering, 3rd Edition, Mc Graw-Hill Book Company, 1987.

4. Co	4. Course Learning Outcomes (CLOs)						
S/N	CLO	Domain	Taxonomy Level	PEOs	Assessment		
1	Understand the basic concepts of corrosion- definition and classification.	Cognitive	2	2	Classwork + Assignment + Test + Attendance		
2	Identify and differentiate between the various types of corrosion.	Cognitive	3	1	Classwork + Assignment + Test + Attendance		

3	Estimate the corrosion behaviours of materials and select appropriate procedures for the protection of materials.		4	2	Classwork + Assignment + Test + Attendance
4	Articulate and utilize knowledge on corrosion prevention strategies.	Cognitive	3	1	Classwork + Assignment + Test + Attendance
5	Demonstrate an understanding and evaluation of the methods for corrosion mitigation and control for the protection of materials and structures.	Cognitive	5	4	Classwork + Assignment + Test + Attendance
6	Analyze options and Select the appropriate procedure for the protection of materials.	Cognitive	4	3	Classwork + Assignment + Test + Attendance
7	Evaluate the cost and efficiency of implementing procedures for the protection of materials and structures.	Cognitive	5	2	Classwork + Assignment + Test + Attendance
8	Demonstrate an understanding of	Cognitive	2	5	Classwork + Assignment + Test + Attendance

corrosion prevention		
and control strategies.		

5. DET	5. DETAILED LECTURE PLAN				
Week	Lecture	Course Content to be Covered	References		
No					
1	1	Introduction to basic concepts of Corrosion and	Hand Book of Corrosion		
		Corrosion Control. Definitions of Corrosion and	Engineering. Roberge,		
		corrosion Terminology. Cost and economic	P.R. 1999. (Mcgraw-Hill,		
		impact of Corrosion. Factors Influencing	2000).		
		Corrosion	Corrosion Inhibitors		
2	2-3	Classification of corrosion processes. Forms and	Principles and		
		mechanisms of corrosion. Principles of	Applications. Sastri, V.S.		
		Electrochemistry: Faraday's Law, Cathodic and	1998 (John Wiley and		
		Anodic processes. Cell Potentials and electrode	Sons,2001)		
		Potentials.	Fontana, M.G. Corrosion		
3	4	Thermodynamics of Corrosion. Free Energy.	Engineering, 3 rd Edition,		
		Standard Electrode Potentials. Nernst Equation.	Mc Graw-Hill Book		
		Electrochemical and Galvanic Series and their	Company, 1987.		
		relevance in corrosion and materials selection.			
4	5	Pourbaix Diagrams of Various Metals: Fe, Al,			
		Ni, Ti, etc. Electrochemical Kinetics of			
		Corrosion: Polarization and Overvoltage			
		Activation Polarization. Concentration			
		Polarization.			
5	6	Anodic and Cathodic Polarization. Corrosion			
		Potential and Corrosion Rate. Passivity and			
		Passivators.			
6	7	Protective Coating. Corrosion protection by			
		environmentally friendly corrosion inhibitors.			
7 – 9	8-9	Cathodic and Anodic Protection. The impact of			
		the sacrificial anodes on the environment.			

10 - 11	10 - 11	Corrosion Testing, Monitoring and Inspection:	
		Laboratory Tests.	
12 – 13	12 – 13	Techniques for Diagnosing Corrosion Failures.	
		Case Studies of Corrosion Failures.	
14	14	Practical Section	
15	15	Revision	
16		Final Semester Examination	

6. EVALUATION CRITERIA					
Component of Assessment	Methods	Marks			
During Semester	Class Seminar/Attendance	10%			
	Assignment	10%			
	Test	10%			
Examination	Semester Examination	70%			
Total	100%				

Chemical Kinetics and Catalysis (CHE 342)

1. Course Time table						
Course	Name of Lecturers:	Class	Semester:	Duration:		
Title/Code:		Level:				
Chemical	Engr. Osaribie Nelson.		Second	April, 2023 –		
Kinetics and	Α	300 Level	Semester	July, 2023		
Catalysis/ ChE						
342						
		Class Timing	g: Wednesdays 12	pm – 2pm		
Credit Unit: 3	Credit hours: 4	Fridays 4pm – 6pm				

2. Course Description/Objectives

The course is designed to expose students with the basic knowledge of the principles of chemical kinetics as related to the analysis of reacting systems and the factors that influence the system. It further, introduces the students to the pathway of rate expressions using rate determining step, reaction intermediate, equilibrium or steady state assumptions and reaction mechanisms. The quantitative aspect of the course such as integration of rate equations: - zero, first, second order cases, graphical analysis of rate data for rate constant and half life determination for each of the cases for both single and multistep reactions that will help the students in chemical reactor design is also considered.

It will also provide students with the knowledge of collision and transition state theories and the concept of catalysis in chemical reactions.

3. Course Outlines

Introduction, Rate Expressions for Chemical Reactions Law of Mass Action

Constant Volume Reversible, Irreversible, Parallel and Consecutive Reactions

Order and its Determination, Variable Volume Reactions

Arrhenius Equation and Activation Energy, The Theory of Reaction Rates, especially:- The

collision theory and theory of absolute reaction rates analysis

Homogeneous and heterogeneous catalytic reactions and their kinetics,

Kinetics of electrochemical processes

Equilibrium ionic solutions.

Recommended textbooks

- 1. "Chemical Engineering Kinetics" by Smith J.M
- 2. "Elements of Chemical Reaction Engineering" by Fogler H.S
- 3. "Chemical Reaction Engineering" by Levenspiel O
- 4. "An Introduction to Chemical Engineering Kinetics & Reactor Design" by Charles G. H
- 5. "Kinetics and Mechanisms of Chemical Transformations" by Rajaram J. and Kuriacose J. C
- 6. "Chemical Kinetics and Reaction Dynamics" by Santosh K.U
- 7. "Chemical and Catalytic Reaction Engineering" by Carberry J.J
- 8. "Fundamentals of Chemical Reaction Engineering" by Davis M.E and Davis R.

4. Course Learning Outcomes (CLOs)

S/N CLO Domain Taxonomy PEOs Assessment Level Identify the 1 Cognitive 2 2 Classwork + Assignment + different ways of Test + Attendance expressing rate equation Application of the Cognitive Classwork + Assignment + 2 3 1 different rate Test + Attendance equations. 3 Evaluate the Cognitive 5 1 Classwork + Assignment + performance of Test + Attendance constant and variable volume reactions Estimate the effect Cognitive 5 3 Classwork + Assignment + 4 of temperature on Test + Attendance rate of reaction using the Arrhenius Equation and the theory of reaction rates Apply the practical 5 Cognitive 3 3 Classwork + Assignment + based knowledge to Test + Attendance validate the theoretical concepts. **5. DETAILED LECTURE PLAN Course Content to be Covered** Week References Lecture No Introduction and Importance of Chemical 1 1 Chemical Engineering

Department of Chemical Engineering Hand Book

Department of Chemical Engineering Hand Book

Kinetics by Smith J.M

Kinetics and Catalysis in the Industry

2	2 - 3	The Study of chemical reaction rates,	
		relative rates, the law of mass action and	
		derivation of rate expressions	
3	4	The Study of the methods to determine	-
		reaction order and molecularity of a	
		reaction	. Elements of Chemical
4	5	The Study of constant volume reactions and	Reaction Engineering by
		derivation of the rate laws	Fogler H.S
5	6	Variable volume reaction and rate law	
		derivation	
6	7-9	Application of:	
		Arrhenius Equation and Activation Energy	
7-9	8-12	The Theory of Reaction Rates:	
		The Collision Theory and	3. Chemical Reaction
		Absolute reaction rates	Engineering" by Levenspiel O
10-11	13 – 15	The Study of:	
		The characteristics/role of Catalyst in	
		chemical reaction	A Textbook of Chemical and
		Homogeneous and Heterogeneous catalysis	Catalytic Reaction
12-13	16 – 18	Kinetics of Electrochemical Processes	Engineering" by Carberry J.J
14	19 – 20	The Study of Equilibrium ionic solutions	
15	21 - 22	Revision	0. A Textbook of
			Kinetics and Mechanisms of
			Chemical Transformations by
			Rajaram J. and Kuriacose J. C
16		Final Semester Examinat	tion

6. EVALUATION CRITERIA					
Component of Assessment	Methods	Marks			
During Semester	Classwork	5%			
	Assignment	10%			
	Test	10%			
	Class Attendance	5%			

Examination	Semester Examination	70%
Total		100%

PETROLEUM PROCESSING I (CHE 312)

1. Course Time table					
Course	Name of Lecturers:	Class	Semester:	Duration:	
Title/Code:		Level:			
Petroleum	Engr. Osaribie Nelson.		Second	April, 2023 –	
Processing I	A	300 Level	Semester	July, 2023	
ChE 312					
Credit Unit: 3	Credit hours: 4	Class Timing: Monday 10am – 12 noon		- 12 noon	
Credit Ollit. 5	Crean nours. 4		Wednesday 10a	um – 12 noon	

2. Course Description/Objectives

This course is designed to impart basic knowledge about the overview of the chemical composition and physical properties of petroleum, petroleum products and the chemistry behind the various processing units to students in order to have adequate understanding of petroleum refining industry. It also helps students to know the impurities associated with crude oil and its products and on how to pretreat the crude oil before downstream processing.

The concepts behind the major petroleum refining units and conversion processes are illustrated with extensive graphics, Flow diagrams and various manufacturing schemes for the students understanding.

The course also presents briefly the environmental hazards as a result of refining and conversion processes and the stringent measures to conserve the environment.

3. Course Outlines

1. Chemical composition of petroleum

- 2. Desalination or desalting processes
- 3. Atmospheric and Vacuum distillation of petroleum
- 4. True boiling and Equilibrium flash vaporization curves for petroleum and petroleum fractions
- 5. Gasoline stabilization and Sweetening

6. Properties of fuels:- Octane number, Cetane number, Flash Point, Fire Point, Pour Point, Cloud Point

Specific gravity, Aniline Point etc

7. Hydrocarbon gas purification and Separation e,g, Amine scrubbing, SCOT and CLAUS processes etc

- 8. LPG production:- From Oil wellhead and refinery operations
- 9. Gas processing:- Alkylation and Polymerization

10. Chemistry, Thermodynamics and kinetics of thermal and catalytic processes in the petroleum business

- 11. Thermal processes:- Thermal cracking, Coking and Pyrolysis
- 12. Catalytic reforming and Isomerization

Recommended textbooks

1. Fundamentals of Petroleum Refining by Fahim M.A., Sahhhaf T.A., Elkilani A.S.

2. Fundamentals of Petroleum and Petrochemical Engineering by Chaudhuri U.R.

3. Handbook of petroleum refining processes by Meyers Robert A.

4. Petroleum Refining Technology by Ram Prasad.

- 5. Advanced Petroleum Refining by Sarkar G.N.
- 6. The Chemistry and Technology of Petroleum and Gas by Erikh V.N., Rasina M.G., Rudin M.G.
- 7. Engineering Chemistry by Dara S.S and Umare S.S

4. Co	4. Course Learning Outcomes (CLOs)					
S/N	CLO	Domain	Taxonomy	PEOs	Assessment	
			Level			
1		Cognitive	2	2	Classwork +	
	Introductory				Assignment + Test +	
	information about				Attendance	
	origin, exploration					
	and production of					
	crude oil and					
	understand their					

	properties and their significance.				
2	Identify the Types of crude, crude composition and classification	Cognitive	3	1	Classwork + Assignment + Test + Attendance
3	Acquire knowledge about pretreatment and the different separation processes involved in petroleum refinery.	Cognitive	5	1	Classwork + Assignment + Test + Attendance
4	Acquire knowledge of various conversion processes involved in petroleum refinery.	Cognitive	5	3	Classwork + Assignment + Test + Attendance
5	Understand and evaluate various residue processing schemes	Cognitive	3	3	Classwork + Assignment + Test + Attendance

5. DET	5. DETAILED LECTURE PLAN				
Week	Lecture	Course Content to be Covered	References		
No					
1	1		1. The Chemistry and		
		Crude composition, Types of crudes,	Technology of Petroleum		
		Characteristics and classification, Crude oil	and Gas by Erikh V.N.,		
		properties and their significance.	Rasina M.G., Rudin M.G.		
2	2 - 3	The Study of the basic principles involved in	2. Engineering Chemistry		
		Pre-treatment of crude oil for Refining-	by Dara S.S and Umare S.S		
		Dehydration and desalting and Physical			
		Separation Processes–Atmospheric	3. Petroleum Refining		
		distillation, Vacuum distillation of residue	Technology by Ram Prasad.		
		products			
3	4	True boiling and Equilibrium flash vaporization	4. Fundamentals of		
		curves for petroleum and petroleum fractions	Petroleum Refining by		
4	5	. Gasoline stabilization and Sweetening	Fahim M.A., Sahhhaf T.A.,		

5	6	Properties of fuels: Octane number, Cetane	Elkilani A.S.
		number	
		Flash Point, Fire Point, Pour Point, Cloud Point	5. Fundamentals of
		Specific gravity, Aniline Point etc	Petroleum and
6	7-9	Hydrocarbon gas purification and Separation	Petrochemical Engineering
		e,g,	by Chaudhuri U.R
		Amine scrubbing, SCOT and CLAUS processes	
		etc	
		LPG production:-From Oil wellhead and	6. Handbook of petroleum
		refinery operations	refining processes by
			Meyers Robert A.
7-9	8-12	Hydrocarbon Gas Processing and Applications	
10 - 11	13 – 15	Chemistry, Thermodynamics and kinetics of	
		thermal and catalytic processes in the petroleum	7 Advanced Deterlation
		business	7. Advanced Petroleum
			Refining by Sarkar G.N.
12 - 13	16 – 18	Thermal processes: Thermal cracking, Coking	
		and	
		Pyrolysis	
14	19 – 20	The study of the principle, operating parameters	
		and advantages of Catalytic reforming and	
		Isomerisation	
15	21 – 22	Revision	
16		Final Semester Examination	

6. EVALUATION CRITERIA			
Component of Assessment	Methods	Marks	
During Semester	Classwork	5%	
	Assignment	10%	
	Test	10%	
	Class Attendance	5%	

Examination	Semester Examination	70%
Total		100%

ORGANIC PROCESSES (CHE 323)

1. Course Time ta	ble			
Course	Name of Lecturers:	Class	Semester:	Duration:
Title/Code:		Level:		
Organic	Engr. Osaribie Nelson.		FIRST	January, 2023 –
Organic	Engl. Osariole iversoli.			January, 2023 –
Processes ChE	A	300 Level	Semester	March, 2023
323				
Credit Unit: 2	Credit hours: 4	Class Timing	g: Tuesday 8am –	10am
			Wednesday 8an	n – 10am

2.Course Description/Objectives

This course presents the fundamental principles of organic chemistry as related to chemical process engineering. It introduces the basic techniques of organic compound synthesis such as polymers and/or fine chemicals e.t.c; structure, properties, and nomenclature of organic compounds; and some basic organic reactions such as addition, substitution, elimination, rearrangement reactions of organic compounds found in the chemical processing industry and reaction mechanisms. Furthermore, the course exposes students to a better understanding of the aromatic compounds and organic functional groups, which include carboxylic acids and nitrogen, sulphur, oxygen containing, halogenated hydrocarbons and their reactivity patterns. The course also presents briefly the basic concepts of electrochemical processes, nuclear

reactions and chemical kinetics.

Course Outlines

- 1. Nomenclature of hydrocarbons
- 2. Conformation properties of hydrocarbons
- 3. Aromatic and heterocyclic hydrocarbons
- 4. Mechanism and stereochemistry of hydrocarbon reactions

- 5. Aromatic substitution rearrangements
- 6. Characteristic reactions of functional groups:- alcohols, carbonyl etc,
- 7. Isomerism:-Optical, geometric, chain and diastereoisomerism
- 8. Basic Principles of:-

Electrochemistry

Chemical kinetics and

Nuclear chemistry.

Recommended textbooks

1. Engineering Chemistry by Dara S.S and Umare S.S

2. Undergraduate Chemistry (Fundamental Principles) by Manilla P. N, Ogali R. E and

Uzoukwu B. A

3. Principles of General Chemistry (A Programmed Approach) by Anusiem A. C. I

4. Organic Chemistry by Solomon G.T.W and Fryhle C.B

5. Kinetics and Mechanisms of Chemical Transformations by Rajaram J. and Kuriacose J. C

3.Co	urse Learning Outco	mes (CLOs)			
S/N	CLO	Domain	Taxonomy	PEOs	Assessment
			Level		
1	Identify the	Cognitive	2	2	Classwork + Assignment +
	different system of				Test + Attendance
	naming organic				
	compounds				
2	Application of the	Cognitive	3	1	Classwork + Assignment +
	naming systems				Test + Attendance
3	Evaluate different	Cognitive	5	1	Classwork + Assignment +
	conformational				Test + Attendance
	properties of				
	hydrocarbon				
	compounds				

4	Estimate the	Cognitive	5	3	Classwork + Assignment +
	possible processes				Test + Attendance
	involved in				
	chemical production				
5	Apply the practical	Cognitive	3	3	Classwork + Assignment +
	based knowledge to				Test + Attendance
	validate the				
	theoretical concepts.				

5.DETA	ILED LE	CTURE PLAN	
Week	Lecture	Course Content to be Covered	References
No			
1	1	Introduction and the significance of Organic	1. Engineering Chemistry
		Processes in Chemical and the Allied Industry	by Dara S.S and Umare S.S
2	2 - 3	The Study of the basic principle involved in	-
		naming organic compounds	
3	4	The Study of the methods of viewing organic	2. Undergraduate Chemistry
		compounds and their conformational analysis	(Fundamental Principles) by
4	5	Aromaticity and Applications	Manilla P. N, Ogali R. E
5	6	Functional groups and their characteristics and	and
		involvement in chemical reactions	Uzoukwu B. A
6	7-9	The study of reaction mechanism and its	
		importance in the process industry	3. Organic Chemistry by
7 – 9	8-12		Solomon G.T.W and Fryhle
10 - 11	13 – 15	Electrochemistry and Applications	C.B
12 – 13	16-18	Component of a reaction, Types of reactions,	
		rate of reaction, rate laws for different	4. Kinetics and Mechanisms
		reactions, significance of rate constant	of Chemical
14	19-20	The basic principles of nuclear chemistry	Transformations by
15	21 - 22	Revision	Rajaram J. and Kuriacose J.
			С
			5. Principles of General

16	Final Semester Examination	
		C. I
		Approach) by Anusiem A.
		Chemistry (A Programmed

6.EVALUATION CRITERIA				
Component of Assessment	Methods	Marks		
During Semester	Classwork	5%		
	Assignment	10%		
	Test	10%		
	Class Attendance	5%		
Examination	Semester Examination	70%		
Total		100%		

METALLURGY (CHE 361)

1.Course Time tal	ble			
Course	Name of Lecturer(s):	Class	Semester:	Duration:
Title/Code:		Level:		
Metallurgy/ CHE	Mr. Sunny Ogbereyo		First Semester	January, 2023 –
361		300 Level		April, 2023
Constitute 2		Class Timing	g: Tuesday 12pm	– 2pm
Credit Unit: 2	Credit hours: 4		Wednesday 8an	n – 10am

2.Course Description/Objectives

Chemical metallurgy encompasses the extraction and refining of metals, liquid metal treatments, and the corrosion protection and surface treatment of metals. A study of each of the topics in the course outline section below demands an understanding of the principles of thermodynamics, reaction kinetics and electrochemistry.

The course will enhance students' skills and knowledge to metal ore concentration, processes in iron & steel manufacturing.

3.Course Outlines Geology of Metals 1. 2. Ore Concentration 3. Ore Processing Iron Ore and Steel Production 4. Manufacture of Aluminium, Copper, Zinc, Tin and Silver 5. 6. Metallurgical Slag Testing of Metal Crystallography 7. 8. **Coal Carbonization Recommended textbooks** J. J. MOORE (1981). Chemical Metallurgy. Butterworth & Co (Publishers) Ltd. 1.

 J. J. MOORE (1981). Chemical Metallurgy. Butterworth & Co (Publishers) Ltd. Seshadri Seetharaman (2005). Fundamentals of Metallurgy. Woodhead Publishing and Maney Publishing.

4.Co	urse Learning Outcor	nes (CLOs)			
S/N	CLO	Domain	Taxonomy	PEOs	Assessment
			Level		
1	Introduction to	Cognitive	2	1	Classwork + Assignment +
	metals and its				Test + Attendance
	formation				
2	Introduction to ore	Cognitive	2,3	1	Classwork + Assignment +
	concentration				Test + Attendance
3	Study of methods of	Cognitive	3	1	Classwork + Assignment +
	ore processing				Test + Attendance
4	Introduction to Iron	Cognitive	3,5	2	Classwork + Assignment +
	and Steel				Test + Attendance
	Production				
5	Study of	Cognitive	2,3	2	Classwork + Assignment +
	Manufacture of				Test + Attendance

	Aluminium,				
	Copper, Zinc, Tin				
	and Silver				
6	Understanding of	Cognitive	3	2	Classwork + Assignment +
	Metallurgical Slag				Test + Attendance
7	Testing of Metal	Cognitive	2,3	2	Classwork + Assignment +
	Crystallography				Test + Attendance
8	Coal Carbonization	Cognitive	2	2	Classwork + Assignment +
					Test + Attendance

5.DETAILED LECTURE PLAN					
Week Lecture		Course Content to be Covered	References		
No					
1	1	Geology of Metals	J. J. MOORE (1981).		
	2-3	The study, identification of the various	Chemical Metallurgy.		
		methods of ore concentration	Butterworth & Co		
3 - 5	4 - 5	The study of the methods of ore processing	(Publishers) Ltd.		
6	6 - 8	Methods of Iron Ore and Steel Production	Seshadri Seetharaman		
7 - 8	9 - 11	Manufacture of Aluminium, Copper, Zinc,	(2005). Fundamentals of		
		Tin and Silver	Metallurgy. Woodhead		
9	12	The study of Metallurgical Slag	Publishing and Maney		
10 - 13	13 - 14	Material Testing of Metal Crystallography	Publishing.		
	15 - 16	Study of Coal Carbonization	-		
14	17	Test	-		
15	18 - 19	Revision	-		
16		Final Semester Examination	ion		

6. EVALUATION CRITERIA						
Component of Assessment	Methods	Marks				
During Semester	Classwork	5%				
	Assignment 10%					

	Test	10%
	Class Attendance	5%
Examination	Semester Examination	70%
Total		100%

TRANSPORT PHENOMENA (CHE 352)

1. Course Time Table	
Course Title/Code	Transport Phenomena (CHE 352)
Credit Unit	4
Credit Hours	4
Class Level	300
Name of Lecturer	Engr. Dr. Orlando Ketebu
Semester	Second Semester
Duration	April, 2023-August, 2023
Class Timing	Wednesday 12-3 pm (Engineering Lecture Room 6 (EN 6))

2. Course Description/Objectives

Transport Phenomena is a core Chemical engineering course that provides excellent foundation for students to understand the applications of common principles of heat transfer, mass transfer and fluid mechanics.

3. Course Outlines

1. Fundamentals of Mass Transfer. Similarity of Momentum, and Heat

2. Convective Mass Transfer. General, Molecular and Turbulent Diffusion Equations.

3. Fick's Law for Diffusion. Molecular Diffusion in Gases, Liquids and Solids. Diffusion Coefficients in Gases.

4. Reynolds' Analogy.

5. Steady State Conduction. Forced and Natural Convection. Unsteady-State Conduction. 2-D

Conduction.

6. Heat Transfer Film Coefficient Correlations. LMTD Heat Transfer Design. Fouling Factors.

7. Shell and Tube Heat Exchangers. LMTD Correction Factors

8. Heat Transfer and Pressure Drop Correlations. HX Design and Performance (Kern's and NTU

Methods for Multipass and Cross-Flow HX).

9. Compact Heat Exchangers. Plate Heat Exchangers. Operating Principles, Series and Parallel

Combination, Use and Limitations. Comparison with Shell and Tube Heat Exchangers.

10. Radiation; Blackbody Radiation, Emission from Real Surfaces. Kirchoff^{*}s Law.

Recommended textbooks

1. Transport Phenomena, Revised 2nd Edition by R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, published by Wiley

2. Transport Phenomena Fundamentals By Joel L. Plawsky, Published by CRC press.

S/N	CLO	Domain	Taxonomy Level	PEOs	Assessment
1	Understand the Fundamentals of Mass Transfer. Similarity of Momentum, and Heat.	Cognitive	2	2	Classwork + Assignment + Test + Attendance
2	Explain Convective Mass Transfer. General, Molecular and Turbulent Diffusion Equations.	Cognitive	2	2	Classwork + Assignment + Test + Attendance
3	Understand Fick's Law for Diffusion. Molecular Diffusion in Gases, Liquids and Solids. Diffusion Coefficients in Gases.	Cognitive	2	3	Classwork + Assignment + Test + Attendance
4	Analyze Steady State Conduction. Forced and Natural Convection. Unsteady-State Conduction. 2-D Conduction.	Cognitive	4	3	Classwork + Assignment + Test + Attendance
5	Evaluate Heat Transfer Film Coefficient Correlations. LMTD Heat		5	3	Classwork + Assignment + Test + Attendance

	Transfer Design. Fouling				
	Factors.				
5	Understand the working	Cognitive	2	1	Classwork + Assignment + Test
	principles of Shell and				+ Attendance
	Tube Heat Exchangers.				
	LMTD Correction Factors				
6	Evaluate Heat Transfer and	Cognitive	5	3	Classwork + Assignment + Test
	Pressure Drop				+ Attendance
	Correlations. HX Design				
	and Performance (Kern's				
	and NTU Methods for				
	Multipass and Cross-Flow				
	HX).				
7	Understand and explain	Cognitive	2	2	Classwork + Assignment + Test
	Compact Heat Exchangers.				+ Attendance
	Plate Heat Exchangers.				
	Operating Principles,				
	Series and Parallel				
	Combination, Use and				
	Limitations. Comparison				
	with Shell and Tube Heat				
	Exchangers.				

5. Deta	5. Detailed Lecture Plan						
Week	Lecture	Course Content to be Covered	References				
No							
1-2	1-3	Introduction transport phenomena, transport	1. Transport Phenomena,				
		phenomena relations.	Revised 2nd Edition by R.				
3	4-5	The basic concepts of Convective Mass Transfer.	Byron Bird, Warren E.				
		General, Molecular and Turbulent Diffusion	Stewart, Edwin N.				
		Equations.	Lightfoot, published by				
4	6-7	Fick's Law for Diffusion. Molecular Diffusion in	Wiley				
		Gases, Liquids and Solids. Diffusion Coefficients in	2. Transport Phenomena				
		Gases.	Fundamentals By Joel L.				

5-7	8-12	Steady State Conduction. Forced and Natural	Plawsky, Published by
		Convection. Unsteady-State Conduction. 2-D	CRC press.
		Conduction. Reynolds analogies	
8	13-14	Heat Transfer Film Coefficient Correlations. LMTD	
		Heat Transfer Design. Fouling Factors	
9-10	15-16	Shell and Tube Heat Exchangers. LMTD Correction	-
		Factors.	
11-12	17-18	Heat Transfer and Pressure Drop Correlations. HX	
		Design and Performance (Kern's and NTU Methods	
		for Multipass and Cross-Flow HX).	
13	29	Compact Heat Exchangers. Plate Heat Exchangers.	
		Operating Principles, Series and Parallel	
		Combination, Use and Limitations. Comparison with	
		Shell and Tube Heat Exchangers.	
14	20	Radiation; Blackbody Radiation, Emission from	
		Real Surfaces. Kirchoff [*] s Law	
15	21-22	Revision	
16		Final Semester Examination	

6. Evaluation Criteria						
Components of Assessment	Methods	Marks				
During Semester	Classwork	5%				
	Assignment					
	Test	10%				
Class Attendance		5%				
Examination	70%					
Total	1	100%				

400 LEVEL COURSES

SEPARATION PROCESSES II (CHE 453)

1.Course Time table						
Course	Name of Lecturers:	Class	Semester:	Duration:		
Title/Code:		Level:				
Separation						

Processes II –	Engr. Dr Ebiundu		First Semester	April, 2023 –
CHE 453	Komonibo	400 Level		July, 2023
		Class Timing	g: Mondays 12pm	– 2pm
Credit Unit: 3	Credit hours: 4	Wednesday 12pm – 2pm		
			Thursdays 4pm	– 5pm (Lab)

2. Course Description/Objectives

This engineering course covers the technological applications of Separation processes in the manufacturing well of the chemical process industries. Separation processes are used for such important chores as removal of contaminants from raw materials, recovery and purification of primary products and elimination of contaminants from effluent water and air streams. Separation processes or unit operations is important in our society, due to its wide technological applications in the areas of Medicine, Physical and Environment Science, Manufacturing of chemicals and Petroleum products design.

To understand and be able to apply methods to analyse the characteristics and performance of a range of typical mixing, separation, and similar processing steps for fluids, particulates and multiphases.

To have a Knowledge and understanding of the governing principles of separation behind distillation, absorption and drying processes. Design separation unit operations based on transfer of mass between phases (distillation, absorption, adsorption, crystallization and drying units)

This course will enable students understand complex systems, relating to unit operations and separation processes in the design and construction of chemical plants, in Chemical Industries. It is concerned mainly with the physical nature of the processes that take place in industrial units, and in particular, with determining the factors that influence the rate of transfer of materials. The basic principles underlying these operations, namely fluid dynamics, heat and mass transfer and applications of these principles. An overview of the general principles of Separation processes which includes: Distillation, foam fractionation, gas-liquid chromatography, membrane filtration, dialysis, ultrafiltration, Crystallization, electrolysis and reverse osmosis in water treatment.

3.Course Outlines

Vapour –liquid Equilibrium and distillation.

Distillation equipment. Multicomponent distillation.

Vacuum distillation and steam stripping.

Azeotropic and Extraction distillation. Molecular distillation.

Leaching of solids. Liquid – Liquid extraction.

Theory of crystallization in mono – and multi-systems.

Crystal growth. Dialysis. Reverse Osmosis. Electro-dialysis.

Resources/Recommended Textbooks:

Books:

i. Coulson and Richardson's chemical engineering. Volume 2, Particle technology and separation processes / J.F. Richardson and J.H. Harker with J.R. Backhurst. – available as e-book

This book contains several chapters with detailed explanations of fundamental principles and design methods for separation equipment. This is a fundamental book for chemical engineers – you should buy it!

- Coulson and Richardson's chemical engineering. Volume 6, Chemical engineering design Sinnott, R. K., Coulson, J. M., Richardson, J. F. 2005, available as e-book
 Equipment selection for separations, and quick design methods.
- Separation Process Principles / Ernest J. Henley, J.D. Seader, D. Keith Roper. (John Wiley & Sons, 2011)

Physical and chemical data

- R. H. Perry, Don W. Green: Perry's Chemical Engineers' Handbook, 1999 McGraw-Hill Inc.
- Knovel (available through IChemE) \Box Data search
- <u>http://www.engineeringtoolbox.com/</u>
- Subscription services to databases:
- AspenPlus, HYSYS \Box prediction

4. Course Learning Outcomes (CLOs)

At the end of this course, students shall be able to understand the following:

S/N	CLO	Domain	Taxonomy	PEOs	Assessment
			Level		
1	Understand the	Cognitive	2	2	Classwork + Assignment +
	principles on which				Test + Attendance
	processing				

	a su tin na a st			1	
	equipment				
	operates, and be				
	able to apply				
	methods to				
	determine				
	equipment size and				
	performance of				
	common items such				
	as reactors,				
	exchangers and				
	columns.				
	-Integration of				
	knowledge and				
	understanding to				
	design distillation				
	and absorption				
	columns, and direct				
	heat driers				
2	Understand the	Cognitive	3	1	Classwork + Assignment +
	inherent nature of	0			Test + Attendance
	safety and loss				
	prevention, and the				
	principal hazard				
	sources in chemical				
	and related				
	processes –				
	including				
	flammability,				
	explosivity and				
	toxicity (including				
	biological hazards).				
	- Knowledge and				
	understanding of				
	chemical hazards in				

	a distillation				
	process, eg				
	flammability, auto-				
	ignition				
	temperature, flash-				
	point; and of safety				
	measures in a				
	vapour-liquid				
	separation				
3	Have a knowledge	Cognitive	5	1	Classwork + Assignment +
	and understanding				Test + Attendance
	of laboratory				
	practice, and able				
	to operate bench-				
	(or larger) scale				
	chemical				
	engineering				
	equipment				
	- Operation and				
	study of lab scale				
	separation				
	equipment and				
	understanding of				
	how different				
	variables impact on				
	equipment				
	behaviour				

5. DETAILED LECTURE PLAN

WEEK 1: Introductory class and preliminaries

WEEK 2, 3: Vapour -liquid Equilibrium and distillation. Distillation equipment

WEEK 4, 5, 6: Multicomponent distillation. Vacuum distillation and steam stripping. Azeotropic and Extraction distillation. Molecular distillation

WEEK 7: Leaching of solids. Liquid – Liquid extraction

WEEK 8, 9: Theory of crystallization in mono - and multi-systems. Crystal growth

WEEK 10: Dialysis. Reverse Osmosis. Electro-dialysis.

6. STUDENT ASSESSMENT AND GRADE ASSIGNMENT

Assessment shall be based on the following:

Total:	100marks
Final Examination:	70marks
Test 2:	10marks
Test 1:	10marks
Assignment 2:	5marks
Assignment 1:	5marks

CHEMICAL ENGINEERING PROCESS ANALYSIS AND OPTIMIZATION (CHE 431)

1.Course Time tal	1.Course Time table				
Course	Name of Lecturer:	Class	Semester:	Duration:	
Title/Code:		Level:			
Fluid Particle Technology/	Engr. W. Ifidi,	400 Level	First Semester	September, 2023 – December,	
CHE 413				2023	
Credit Unit: 3	Credit hours: 4	Class Timing	g: Mondays 8am - Wednesdays 8a		

2. Course Description/Objectives

This course is intended to teach students how to use optimization algorithms to improve the design and operation of chemical processes. The first part of the course emphasizes problem formulation, i.e., how one develops mathematical statements for the objective function (usually economic model) to be minimized or maximized and the equality and inequality constraints (the process model). Once the problem is formulated, the student should be able to select the optimization technique which is best suited to the problem characteristics. The second part of the course introduces applications of optimization in chemical process synthesis and planning problems.

3.Course Outline

1. Review of the theorems and operations of vectors and matrices.

- 2. Application to chemical engineering stage processes.
- 3. Formation of simple and complex chemical engineering problems and their solutions.
- 4. Numerical methods for solving linear and non-linear equations, ordinary differential equations, and partial differential equations.
- 5. Introduction to optimization, general optimization problems, basic steps of solving optimization problems and methods.
- 6. Linear programming.
- 7. Numerical optimization techniques
- 8. Optimization of stage systems.

Recommended textbooks

- Chapra, S.C. and Canale, R.P. (2010) Numerical Methods for Engineers. 6th Edition, McGraw-Hill, New York
- 2. Edgar, T.F., Himmelblau, D.M. and Lasdon, L.S. (2001) Optimization of Chemical

Processes. McGraw Hill Chemical Engineering Series, New York

4.Co	urse Learning Outco	mes (CLOs)			
S/N	CLO	Domain	Taxonomy	PEOs	Assessment
			Level		
1	Understand	Cognitive	2	2	Classwork + Assignment +
	theoretical				Test + Attendance
	background about				
	setting up objective				
	functions and				
	constraints for				
	chemical				
	processes.				
2	Identify and set up	Cognitive	2	1	Classwork + Assignment +
	functions				Test + Attendance
	describing an				
	optimization				
	problem in				
	chemical processes.				

3	Be able to use	Cognitive	5	1	Classwork + Assignment +
	economics to derive				Test + Attendance
	an objective				
	function.				
4	Be familiar with the	Cognitive	4	3	Classwork + Assignment +
	preferred software				Test + Attendance
	packages and				
	optimization				
	techniques to solve				
	linear programming				
	and nonlinear				
	programming				
	problems				
5	Learn how to think	Cognitive	4	3	Classwork + Assignment +
	about and use				Test + Attendance
	optimization as a				
	tool in process				
	design and				
	operation				

4.DETAILED LECTURE PLAN						
Week	Lecture	Course Content to be Covered	References			
No						
1	1	Review of matrices and vectors	1. Chapra, S.C. and			
2 -3	2	The Nature and Organization of Optimization	Canale, R.P.			
		Problems	(2010) Numerical Methods			
4-5	3	Developing Models for Optimization	for Engineers. 6th Edition,			
6	4	Formulation of the Objective Function	McGraw-Hill, New York			
7	5	Solving Optimization Problems using Computer	2. Edgar,			
		Programs (Excel)	T.F., Himmelblau, D.M.			
8	6	Optimization of Unconstrained Functions: One-	and Lasdon, L.S.			
		Dimensional Search	(2001) Optimization of			

9	7	Unconstrained Multivariable Optimization	Chemical Processes.			
10	8	Linear Programming	McGraw Hill Chemical			
11	9		Engineering Series, New			
9		Revision	York			
	Final Semester Examination					

6.EVALUATION CRITERIA				
Component of Assessment	Methods	Marks		
During Semester	Classwork	5%		
	Laboratory Practical	10%		
	Test	10%		
	Class Attendance	5%		
Examination	Semester Examination	70%		
Total		100%		

POLYMER SCIENCE AND TECHNOLOGY I (CHE 413)

1. Course Time Table

Course Title/Code	Class	Semester	Duration	Credit	Credit	Class Timing
	Level			Units	hours	
POLYMER SCIENCE	400	First	April, 2023	2	4	Mondays: 2-4pm
AND TECHNOLOGY	Level	Semester	to July 2023			and Tuesdays: 12-
I/CHE 413						2pm

2. Course Description/Objectives

(i) Course Description

The course introduces students to the historical development of polymers; basic definitions and classifications of polymers. Detail discussion of structures of polymers and thermal transitions in polymers. Students will be made to study polymer preparation, polymerization processes and modification of polymers.

(ii) Objectives:

The major objectives are to

- 1. Provide the basic knowledge in understand the historical background of polymer.
- 2. Produce students who have an in-depth knowledge of polymer and its classifications.
- 3. Develop students to prepare and modify polymers.

4. Encourage students to go into the field of polymer science and technology.

3. Course outline

1. Introduction: historical Development.

2. Basic Definitions (Polymer degree of polymerization, molecular weight, molecular weight distribution, molecular weight average.

3. Classification of polymers: synthetic versus natural, polymer structure, polymerization mechanisms, preparation techniques, end use.

4. Structure of polymers, chemical bonding in polymers (primary and secondary bonding forces).

5. Primary structures (morphology), secondary structure (confirmation, configuration, tacticity, molecular weight and its measurement, Tertiary structure, cohesive energy density, crystallinity and factors affecting crystallinity.

6. Thermal transitions in polymers: the glass transition temperature, theories of glass transition, measurement of Tg, factors affecting Tg, the crystalline melting point, Tm (crystallization tendencies, measurement of Tm, factors affecting Tm).

 Polymer preparation, polymerization processes (addition and condensation, copolymerization), modification of polymers (alloying, blending, post polymerization reactions).

Recommended textbooks

- Robert O. Ebewele (200). Polymer Science and Technology, *Department of Chemical Engineering, University of Benin, Benin City, Nigeria*. Boca Raton New York, CRC Press Copyright 2000.
- 2. Others: Available in the www. polymer science and Technology
- 4. Learning Outcomes

S/N	CLO	DOMAIN	TAXANOMY	PEOS	ASSESSMENT
			LEVEL		
1.	List and identify the	Cognitive	1	1	Class work +

	stages of polymer development from				Assignment + Test + Attendance
	inception				
2.	Analyze the	Cognitive	3	4	Class work +
	definitions of polymer				Assignment + Test +
	and some terms				Attendance
	applicable to polymer.				
3.	State, describe and	Cognitive	5	7	Class work +
	explain the				Assignment + Test +
	classifications and				Attendance
	structures of polymers.				
4.	Identify polymer	Cognitive	4	3	Class work +
	structures and carry out				Assignment + Test +
	detail study on				Attendance
	polymers				
5.	Prepare simple	Cognitive	5	2	Class work +
	polymers				Assignment + Test +
					Attendance

5. Detailed Lecture Plan

Week	Lectures	Course Content to be covered
NO		
1.	1-2	Introduction: historical Development. Basic definitions (Polymer and monomer
2.	3-4	Introduction: Basic definitions (Degree of polymerization and molecular weight)
3.	5-6	Introduction: Basic definitions (Molecular weight distribution, molecular weight average)
4.	7-8	Classification of polymers: synthetic versus natural, Addition versus Condensation, etc
5.	9-10	Polymer structure and polymerization mechanisms
6.	11-12	Polymer preparation techniques and end use.

7.	13-14	Structure of polymers, chemical bonding in polymers (primary and secondary bonding forces).
8.	15-16	Evaluation of Assignment and Mid semester Test
9.	17-18	Primary structures (morphology), secondary structure (confirmation, configuration, tacticity, molecular weight and its measurement, Tertiary structure, cohesive energy density, crystallinity and factors affecting crystallinity.
10.	19-20	Thermal transitions in polymers: the glass transition temperature,
11.	21-22	Theories of glass transition, measurement of Tg, factors affecting Tg, the crystalline melting point,
12.	23-24	Tm (crystallization tendencies, measurement of Tm, factors affecting Tm).
13.	25-26	Polymer preparation and polymerization processes (addition and condensation, co-polymerization),
14.	27-28	Modification of polymers (alloying, blending, post polymerization reactions.
15.	29-30	Revision
16.	31-32	Final semester Examination

6. Evaluation Criteria

Component of Assessment	Method	Marks (%)
Continuous Assessment	Class attendance	5
	Asssignment	10
	Mid semester Test	15
Examination	Semester Examination	70
Total		100

CHEMICAL REACTION ENGINEERING I (CHE 441)

1.Course Time table					
Course	Name of Lecturers:	Class	Semester:	Duration:	
Title/Code:		Level:			

Chemical	Engr. Dr Ebiundu		First Semester	April, 2023 –
Reaction	Komonibo	400 Level		July, 2023
Engineering I –				
CHE 441				
		Class Timing	g: Mondays 12pm	n – 2pm
Credit Unit: 3	Credit hours: 4		Wednesday 12p	om – 2pm
			Thursdays 4pm	– 5pm (Lab)

2.Course Description/Objectives

Reactor design is a core fundamental course in Chemical Engineering research. Chemical reaction engineering is that engineering activity concerned with the exploitation of chemical reactions on a commercial scale (i.e., minimizing cost and maximizing profits). Its goal is the successful design and operation of chemical reactors, and probably more than any other activity it sets chemical engineering apart as a distinct branch of the engineering profession in the society. To produce a world class Chemical Engineer, the course therefore, is essentially a compulsory one for every Chemical Engineer to study.

To enable students, develop a clear understanding of the fundamentals of Chemical Reaction Engineering and the ability to apply these methods to design different types of reactors. Reactor design uses information, knowledge, and experience from a variety of areas-thermodynamics, chemical kinetics, fluid mechanics, heat transfer, mass transfer, and economics. Chemical reaction engineering is the synthesis of all these factors with the aim of properly designing a chemical reactor.

This course will introduce the students to Chemical Reaction Engineering and the different types of Chemical reactors and where in the Industry, they are applied. Design concepts. Safety considerations in reactor design (Preliminary discussion to address the safety issues). Instrumentation for reactors.

3.Course Outline

1. Classification of reactors.

2. Chemical Kinetics as applied to Batch and Continuous reactors, Single ideal reactors.

- **3.** Steady State, mixed, and plug flow reactors.
- **4.** Holding time and Space for flow systems.
- 5. Design equations for single reactors. Batch reactor, mixed versus plug flow reactors.
- 6. Reactors in Series and in Parallel.
- 7. Recycle reactors concepts of residence time distribution

Resources/Recommended Textbooks:

~

10

- 1. Levenspiel, O. Chemical Reaction Engineering, John Wiley & Sons, Inc, New York 1999
- Froment, G.F Bischoff K.B and De Wilde J. Chemical Reactor Analysis and Design, 3rd Ed. John Wiley & Sons, Inc, New York, 2011
- 3. Smith, J.M. Chemical Engineering Kinetics, 3rd Ed. McGraw-Hill Book Company
- Charles G. Hill, Thatcher W. Root. Introduction to Chemical Engineering Kinetics & Reactor Design, 2nd Ed. Claire Vallance: An Introduction to Chemical Kinetics
- 5. Elements of Chemical Reaction Engineering, 5th Edition, By H. Scott Foglar

4.Co	4.Course Learning Outcomes (CLOs)						
At th	At the end of this course, students shall be able to understand the following:						
S/N	CLO	Domain	Taxonomy	PEOs	Assessment		
			Level				
1	What reactors are	Cognitive	2	2	Classwork + Assignment +		
	and where they are				Test + Attendance		
	used						
2	Types of reactors	Cognitive	3	1	Classwork + Assignment +		
					Test + Attendance		
3	Design concepts	Cognitive	5	1	Classwork + Assignment +		
	(deriving design				Test + Attendance		
	equations using						
	mass balance)						
4	Embedding Rate	Cognitive	5	3	Classwork + Assignment +		
	laws and				Test + Attendance		
	Stoichiometry in						

	the design				
	equations and				
	Energy balances				
5	Safety	Cognitive	3	3	Classwork + Assignment +
	considerations in				Test + Attendance
	reactor design				
6	Instrumentation for	Cognitive	3	3	Classwork + Assignment +
	reactors				Test + Attendance

5.DETAILED LECTURE PLAN

WEEK 1: Introductory class and preliminaries

WEEK 2,3: Classification of reactors. Chemical Kinetics as applied to Batch and Continuous reactors, Single ideal reactors.

WEEK 4: Holding time and Space for flow systems.

WEEK 5 -7: Design equations for single reactors.

WEEK 8, 9: Batch reactor, mixed versus plug flow reactors. Reactors in Series and in Parallel

WEEK 10: Recycle reactors concepts of residence time distribution.

6.STUDENT ASSESSMENT AND GRADE ASSIGNMENT

Assessment shall be based on the following:

Assignment 1: 5marks

Assignment 2: 5marks

Test 1: 10marks

Test 2: 10marks

Final Examination: 70marks

Total: 100marks

500 LEVEL COURSES

PROCESS DYNAMICS (CHE 532)

1.Course Time table					
Course	Name of Lecturer(s):	Class	Semester:	Duration:	
Title/Code:		Level:			

Process	Mr. Sunny Ogbereyo		Second	April, 2023 –
Dynamics/ CHE		500 Level	Semester	July, 2023
532				
Cur lit Haita 2	Crastitationers A	Class Timin	g: Mondays 10)am – 12noon
Credit Unit: 3	Credit hours: 4		Thursday 12	2pm – 2pm
2.Course Descrip	tion/Objectives			
Chemical Enginee	ring Process Dynamic inv	olves the analy	sis of a system'	s dynamic behaviour
and response to va	rious inputs to the system.	This is the stu	dy of the behave	iour of a system as
time progresses wi	th is a continuation of pro	cess modelling	where the focu	s is on the study of the
behavior dynamic	model.			
The course will en	hance students' skills to u	nderstand and o	levelop dynami	c process models and
will also broaden t	heir knowledge on solutio	n methods in so	olving dynamic	equations. This
course will also he	lp students come up with	control measure	es to dynamic s	ystems.
3.Course Outline	8			
1.Components of a	a control system			
2. Operation and E	Design			
3. Basic control ac	tions (Valves)			
4. Transfer functio	ns			
5. Derivation of dy	namic equations for simp	le instruments		
6. Thermometer				
7. Liquid levels				
8. Manometer				
9. Dynamic equati	ons for simple models:			
10. Mixing vessels	3			
11. Single Isothern	nal Continuously Stirred 7	Tank Reactors (CSTR)	
12. CSTR in series	5			
13. Introductio	n and use of Block diagram	m		
14. System respon	se to impulses			
15. Step and Sinus	oidal inputs			

Recommended textbooks

1. William L. Luyben (1996). "Process Modeling, Simulation and Control for Chemical

Engineers" (2nd Edition). McGraw-Hill Publishing Company, New York.

2. University of Michigan Chemical Engineering (2007). "Chemical Process Dynamics and

Controls". Open Source

S/N	CLO	Domain	Taxonomy Level	PEOs	Assessment
1	Identify the components of a control system including their operations and design	Cognitive	2	2,3	Classwork + Assignment + Test + Attendance
2	Develop models of various control valves	Cognitive	3,4	1,2,4	Classwork + Assignment + Test + Attendance
3	Evaluate dynamic models and apply Laplace Transforms/Transfer function as a solution method	Cognitive	3,5	1,5	Classwork + Assignment + Test + Attendance
4	Develop dynamic models for simple instruments such as Thermometer, Liquid level etc.	Cognitive	4	3	Classwork + Assignment + Test + Attendance
5	Introduction to Block diagram and Transfer	Cognitive	2,3	1,2	Classwork + Assignment + Test + Attendance

function application	r			r	
		function application			

Week	Lecture	Course Content to be Covered	References
No			
1	1	Introduction to Components of a control system	William L. Luyben (1996).
		including their operations and design	"Process Modeling,
2	2 - 3	The study of Basic control actions a case study of	Simulation and Control for
		Valves	Chemical Engineers" (2nd
3 - 5	4 - 5	Introduction to Laplace transforms and Transfer	Edition). McGraw-Hill
		functions and its application to dynamic models	Publishing Company, New
6	6 - 8	Derivation of dynamic equations for simple	York.
		instruments such as Thermometer, Manometer and	
		Liquid Level controller	
7 - 8	9 - 11	Development of Dynamic equations for simple	University of Michigan
		models	Chemical Engineering
		Mixing vessels	(2007). "Chemical Process
		Single Isothermal Continuously Stirred Tank	Dynamics and Controls".
		Reactors (CSTR)	Open Source
		CSTR in series	
9	12	Introduction to Block Diagram	-
10 - 13	13 - 16	Various system behaviour:	-
		System response to impulses	
		Step and Sinusoidal inputs	
		Frequency response	
14	17	Test	
15	18-19	Revision	-
16		Final Semester Examination	

6.EVALUATION CRITERIA			
Component of Assessment	Methods	Marks	

During Semester	Classwork	5%
	Assignment	10%
	Test	10%
	Class Attendance	5%
Examination	Semester Examination	70%
Total		100%

MODELLING OF CHEMICAL ENGINEERING PROCESSES (CHE 533)

1.Course Time tal	1.Course Time table					
Course	Name of Lecturer(s):	Class	Semester:	Duration:		
Title/Code:		Level:				
Modelling of						
Chemical	Mr. Sunny Ogbereyo		First Semester	January, 2023 –		
Engineering		500 Level		April, 2023		
Processes/ CHE						
533						
Credit Unit: 3	Credit hours: 4	Class Timing: Mondays 10am – 12noon				
Credit Unit: 5	Creat nours: 4	Thursday 8am – 10am				

2.Course Description/Objectives

Chemical Engineering Process Modelling is described as assembling sets of equations (models) which describes the behaviour and interrelations of the variables and parameters of a process system or set of systems. This is the study of the prediction of a system behavior as time progresses mathematically.

The course will enhance students' skills to understand and develop dynamic process models and able to predict chemical engineering process system.

3.Course Outlines

1. Introduction to process model building

2. Process variables

3. Lumped and Distributed Processes

- 4. Model formulation for Simple and Complicated Systems
- 5. Empirical modelling and Analysis
- 6. Modelling: Flow through tanks; Continuous Stirred Tank Reactors; Plug flow Reactors; Heat
- Exchangers; Distillation Columns; Extraction Units
- 7. Digital and Analogue Simulations

Recommended textbooks

1. William L. Luyben (1996). "Process Modeling, Simulation and Control for Chemical

Engineers" (2nd Edition). McGraw-Hill Publishing Company, New York.

2. Richard G. Rice and Duong D. Do (1994). Applied Mathematics and Modeling for Chemical Engineers. John Wiley & Sons Inc. New York

Amiya K. Jana (2011). Chemical Process Modeling & Computer Simulation (2nd Edition).
 PHI Learning Private Limited. Delhi

4.Course Learning Outcomes (CLOs)

S/N	CLO	Domain	Taxonomy	PEOs	Assessment
			Level		
1	Introduction to process	Cognitive	2	2	Classwork + Assignment +
	model building				Test + Attendance
2	Introduction to Process	Cognitive	2,3	1	Classwork + Assignment +
	variables				Test + Attendance
3	Model development for	Cognitive	3,5	1	Classwork + Assignment +
	Lumped and				Test + Attendance
	Distributed Processes				
4	Model development for	Cognitive	3,5	2,3	Classwork + Assignment +
	Simple and				Test + Attendance
	Complicated Systems				
5	Introduction to	Cognitive	2,3	2,4,5	Classwork + Assignment +
	Empirical modelling				Test + Attendance
	and Analysis				
6	Design models for	Cognitive	5	2,5	Classwork + Assignment +
	Chemical Engineering				Test + Attendance
	systems such as: Flow				

	through tanks;				
	Continuous Stirred				
	Tank Reactors; Plug				
	flow Reactors; Heat				
	Exchangers;Distillation				
	Columns; Extraction				
	Units				
7	Introduction to Digital	Cognitive	2,3	1,2	Classwork + Assignment +
	and Analogue				Test + Attendance
	Simulations				

Week	Lecture	Course Content to be Covered	References
No			
1	1	Introduction to process model building	William L. Luyben (1996).
			"Process Modeling,
			Simulation and Control for
2	2-3	The study, identification and use of Process	Chemical Engineers" (2nd
		variables	Edition). McGraw-Hill
			Publishing Company, New
3 - 5	4 - 5	Model development for Lumped and Distributed	York.
		Processes	
6	6 - 8	Model formulation for Simple and Complicated	2. Richard G. Rice and
		Systems	Duong D. Do (1994).
7 - 8	9 - 11	Model Development for:	Applied Mathematics and
		a) Flow through tanks	Modeling for Chemical
		b) Continuous Stirred Tank Reactors	Engineers. John Wiley &
		c) Plug flow Reactors	Sons Inc. New York
		d) Heat Exchangers	
		e) Distillation Columns	Amiya K. Jana (2011).
		f) Extraction Units	Chemical Process Modeling
9	12	Introduction to Block Diagram	& Computer Simulation (2nd

10 - 13	13 – 14	Empirical modelling and Analysis	Edition). PHI Learning				
	15 – 16	Introduction to Digital and Analogue Simulations	Private Limited. Delhi				
14	17	Test					
15	18 – 19	Revision					
16		Final Semester Examination					

6.EVALUATION CRITERIA					
Component of Assessment	Methods	Marks			
During Semester	Classwork	5%			
	Assignment	10%			
	Test	10%			
	Class Attendance	5%			
Examination	Semester Examination	70%			
Total		100%			

ENVIRONMENTAL POLLUTION CONTROL AND SAFETY (CH 566)

1.Course Time table						
Course Title/Code:	Name of	Class	Semester:	Duration:		
	Lecturers:	Level:				
Environmental pollution						
control and safety (CHE	Engr. Dr.		Second	April, 2023 –		
566)	Duduna	500 Level	Semester	July, 2023		
	William-Porbeni					
		Class Timin	g:	1		
Credit Unit: 2	Credit hours: 4	Tuesday12:00noon to				
	Credit nours. 4	2:00pm.	Friday			
		10.00am to 12.00noon.				

2.Course Description/Objectives

This is a key introductory course in chemical engineering, exposing students into the environmental aspects in chemical engineering. The course is designed to teach students what

pollution means, different environmental (soil, water and air) pollutants and their sources; their impacts on the environment; understand pollution control legislation; to apply methods to analyse water, wastewaters and air pollutants; design unit operations for filtration ion exchange, chemical and biological treatment of wastewaters from industrial and domestic sources; and to understand adsorption, absorption, condensation and combustion in air pollution control. Students will exposed pollution control measures, monitoring, and biologradation. Students will be taught gaseous pollutants separation and treatment options.

3. Course Outlines

1. Air and water pollution control legislation.

- 2. Air and water quality standards, toxicity of pollutants to the natural environment.
- 3. Water and wastewater treatment methods.

3. Air pollution control by particulates and gas removal. Filtration, cyclones, adsorption, combustion and dispersion.

- 4. Water pollution control by biodegradation.
- 5. Filtration ion exchange, chemical treatment and coagulation.
- 6. Noise pollution and sonic booms.
- 7. Pollution monitoring and pollution control in petroleum industries.
- 8. Treatment of refinery effluents.

Recommended textbooks

1. Unit Operations and Processes in Environmental Engineering. Second edition.-Reynolds,

T.D., Richards, P.A. 1995. (PWS Publishing 1995).

2. Environmental Engineering. Kiely, G. 2007. (Tata McGraw-Hill, 2007).

- 3. Waste Treatment and Disposal. Williams, P.T. 2005. (John Wiley & Sons, Ltd, 2005).
- 4. Perry, R.H. and Green, D.W.: Perry's Chemical Engineers' Handbook, 1999 McGraw-Hill Inc.

4.Course Learning Outcomes (CLOs)					
S/N	CLO	Domain	Taxonomy Level	PEOs	Assessment
1.	Demonstrate a knowledge of	Cognitive	4	4	Classwork + Assignment + Test + Attendance

	global and national				
	air and water				
	pollution control				
	legislations.				
2.	Understanding of	Cognitive	2	4	Classwork + Assignment +
	global and national				Test + Attendance
	air and water				
	quality standards,				
	toxicity of				
	pollutants to the				
	natural				
	environment.				
3.	Analyse the	Cognitive	4	1	Classwork + Assignment +
	characteristics and				Test + Attendance
	Constituents of				
	municipal and				
	industrial				
	wastewaters.				
4	Demonstrates an	Cognitive	3	5	Classwork + Assignment +
	understanding of				Test + Attendance
	processes and				
	design of waste				
	water treatment unit				
	operations.				
5	Demonstrate an	Cognitive	3	5	Classwork + Assignment +
	understanding of				Test + Attendance
	biological systems				
	in wastewater				
	treatment.				
6	Identify the sources	Cognitive	1	1	Classwork + Assignment +
	of air pollution and				Test + Attendance
	control strategies by				

	particulates and gas removal.				
7	Demonstrate and understanding the design principles and unit operations for air pollution control.	Cognitive	3	2	Classwork + Assignment + Test + Attendance
7	Identify the methods for pollution remediation, monitoring and control in petroleum industries.	Cognitive	1	6	Classwork + Assignment + Test + Attendance

5.DETA	5.DETAILED LECTURE PLAN					
Week	Lecture	Course Content to be Covered	References			
No						
1	1	Air and water pollution control legislation.	Unit Operations and			
		Air and water quality standards, toxicity of	Processes in Environmental			
		pollutants to the natural environment.	Engineering. Second			
2	2 - 3	WASTE WATER CHARACTERISTICS	editionReynolds, T.D.,			
		Classification of wastewaters.	Richards, P.A. 1995. (PWS			
		Wastewater contaminants- sources and	Publishing 1995).			
		environmental significance.	Environmental Engineering.			
		Analysis of municipal and industrial	Kiely, G. 2007. (Tata			
		wastewater constituents.	McGraw-Hill, 2007).			
3	4	Waste water treatment unit operations and	Waste Treatment and			
		processes:	Disposal. Williams, P.T.			
		Introduction	2005. (John Wiley & Sons,			
		Unit operations for treatment – sedimentation,				

		screening and comminution, filtration,	Ltd, 2005).
		flotation, chemical-polymer addition,	Perry, R.H. and Green,
4	5	Primary waste water treatment.	D.W.: Perry's Chemical
		Secondary waste water treatment.	Engineers' Handbook, 1999
5	6	Tertiary waste water treatment-Biological	McGraw-Hill Inc.
		treatment	
		Design examples	
6	7	Design of Biological Systems; Biological	
		principles and metabolism.	
		Micro-organisms in biological treatment.	
		Kinetics of metabolism growth and substrate	
		utilization.	
		Factors affecting biomass production and food	
		utilization. Reactor types-principles of mass	
		balance.	
7-9	8-9	AIR POLLUTION	
		Introduction-composition of the atmosphere.	
		Air quality standards. Sources of pollutants.	
		Unit operations in particulate removal. Unit	
		operations in gas removal. Design examples.	
10 - 11	10-11	Noise Pollution	
12 – 13	12 – 13	Treatment of refinery effluents	
14	14 – 15	Practical Section	
15	16	Revision	
		Final Semester Examinatio	n

6.EVALUATION CRITERIA				
Component of Assessment	Methods	Marks		
During Semester	Class Seminar/Attendance	10%		
	Assignment	10%		
	Test	10%		
Examination	Semester Examination	70%		

Total

FUEL TECHNOLOGY (CHE 563)

1.Course Time table						
Course	Name of Lecturer:	Class	Semester:	Duration:		
Title/Code:		Level:				
Fuel Technology	Prof. Salome T.		First Semester	July, 2023 –		
(CHE 563)	Torubeli	500 Level		December, 2023		
Credit Unit: 2	Credit hours: 2	Class Timing	·			
Credit Offit. 2	Credit nours. 2	Wednesday's: 8am-10am				

2.Course Description/Objectives

Fuel technology introduce students solid fuels-wood, peat,coal etc, and their origin; gaseous fuels (natural gas, coal gas); liquid fuels. Students are also introduced to fuel gas cleaning and purification; choice of fuels and fuels economics; techno-economic aspects of renewable energies-the present and future, and non renewable-energies- present and the future. Students were also introduced to, and the Fisher-Tropsch process.

3.Course Outlines

- 1. Solid fuel-wood, peat and coal, and their origin, classification and mechanical preparation
- 2. Combustion of coal-low and high temperature cokes
- 3. The Fisher-Tropsch Process
- 4. Liquid fuels, oil fuels, gaseous fuels (natural gas, coal gas)
- 5. Choice of fuels and fuel economics
- 6. techno-economic aspects of renewable energies-the present and future, and
- 7. Non renewable-energies- present and the future.

Recommended textbooks:

- 1. Future of energy: The 2021 guide to the energy transition by John Michael Armstrong.
- 2. Renewable energy systems from biomass by Vladimir Strezov, Hossain Md. Anawar 2022.
- 3. Energy for keeps. Creating clean electricity from renewable resources by Marilyn Nemzer, Deborah Page, Anna Carter, Will Sickle 2022.

S/N	CLO	Domain	Taxonomy	PEOs	Assessment
			Level		
1.	Differentiate	Cognitive	4	4	Classwork + Assignment +
	between solid,				Test + Attendance
	liquid oil fuel, and				
	gaseous fuels				
2.	Differentiate	Cognitive	2	4	Classwork + Assignment +
	between primary				Test + Attendance
	and secondary fuels				
3.	Application of the	Cognitive	4	1	Classwork + Assignment +
	Fisher-Tropsch				Test + Attendance
	process				
	How to make				
	choice of fuels, and				
	fuel economics				
4	How to make	Cognitive	3	5	Classwork + Assignment +
	choice of fuels, and				Test + Attendance
	fuel economics				
5	Demonstration of	Cognitive	3	5	Classwork + Assignment +
	fuel gas cleaning				Test + Attendance
	and purification				
6	To understand the	Cognitive	1	1	Classwork + Assignment +
	techno-economics				Test + Attendance
	aspects renewable				
	and non-renewable				
	energies				
7	Identification of the	Cognitive	1	6	Classwork + Assignment +
	various gases				Test + Attendance
	emitted during				

	rolysis, sification e	etc.	
5. DETA	ILED LE	CTURE PLAN	
Week	Lecture	Course Content to be Covered	References
No			
1	1	Introduction to solid fuel-wood, peat and	
		coal, and their origin.	
2	2 - 3	1. The origin of solid fuels	
		2. Classification and mechanical preparation	
		of solid fuels	
3	4	Solid fuel for specific purposes	
4	5	Combustion of coal-low and high temperature	
		cokes	
5	6	The Fisher-Tropsch Process	
6	7	Liquid fuels, oil fuels, gaseous fuels (natural	
		gas, coal gas)	
7 - 9	8 - 9	Choice of fuels and fuel economics	
10 - 11	10 - 11	Techno-economic aspects of renewable	
		energies-the present and future	
12 - 13	12 - 13	Techno-economic aspects of Non renewable-	
		energies- present and the future.	
14	14 - 15	Practical Section	
15	16	Revision	
		Final Semester Examination)n

6. EVALUATION CRITERIA				
Component of Assessment	Methods	Marks		
During Semester	Classwork	5%		
	Assignment	10%		
	Test	10%		
	Class Attendance	5%		

Examination	Semester Examination	70%
Total		100%

ENGINEERING ECONOMICS AND MANAGEMENT (FCE 571)

1. Course Time table					
Course	Name of Lecturers:	Class	Semester:	Duration:	
Title/Code:		Level:			
Engineering	Prof. A.N. Okpala		First Semester	November, 2022	
Economics and	Dr. Agonga	500 Level		– March, 2023	
Management/FCE	Oyinbonogha				
571	Fred				
	Dr. Sibete Godfrey				
Credit Unit: 2	Credit hours: 4	Class Timing: Wednesdays 10am – 12noon			
			Fridays 8am – 10am		

2. Course Description/Objectives

Engineering Economics and Management gives an understanding of how Economics and management relates to Engineering especially the technical part of Engineering. This course will help students understand better the time value of money basically for decision making as well as the process of leading and directing.

3. Course Outlines

Understanding the Nature and Scope of Economics, Basic Concepts in Engineering Economics.

Applying the Techniques for Analyzing Capital investments.

Evaluation of public alternatives, Replacement Analysis, Make or buy decision.

Understanding the concept, principles and functions of Management.

Evaluating Personnel management; objectives and functions, recruitment and selection personnel development.

Evaluating financial management; sources of financial accounting and book keeping, cost planning and control.

Understanding the concept, principles and structure of a business Organization

Recommended textbooks

Sepulveda, Jose A. Schaum's Outline of Theory and Problems of Engineering Economics.

Copyright 1984 by The McGraw-Hill Companies. ISBN 0-07-023834-0

Engineering Management by B S, Dhillon, Technornic Publishing Co., 1987.

Essentials of Management by Joseph L. Massie, Prentice hall Publishing Co., 4 th Edition.

Engineering Management by D.I. Cleland and D. E Kocaoglu, McGraw-Hill, 1981.

S/N	CLO	Domain	Taxonomy	PEO	Assessment
			Level		
1	Understanding the	Cognitive	2	1	Classwork + Assignment +
	Nature and Scope of				Test + Attendance
	Economics, Basic				
	Concepts in				
	Engineering				
	Economics.				
2	Applying the	Cognitive	3	1	Classwork + Assignment +
	Techniques for				Test + Attendance
	Analyzing Capital				
	investments				
3	Evaluation of public	Cognitive	5	1	Classwork + Assignment +
	alternatives,				Test + Attendance
	Replacement				
	Analysis, Make or				
	buy decision				
4	Understanding the	Cognitive	2	1	Classwork + Assignment +
	concept, principles				Test + Attendance
	and functions of				
	Management.				
5	Evaluating Personnel	Cognitive	5	1	Classwork + Assignment +
	management;				Test + Attendance
	objectives and				
	functions,				
	recruitment and				
	selection personnel				

	development				
6	Evaluating Financial	Cognitive	5	1	Classwork + Assignment +
	management; sources				Test + Attendance
	of financial				
	accounting and				
	book keeping, cost				
	planning and control.				

5.DETA	ILED LEG	CTURE PLAN	
Week	Lecture	Course Content to be Covered	References
No			
1	1-2	Basic Concepts – Engineering Economics	Sepulveda, Jose A. Schaum's
		a) Introduction	Outline of Theory and
		b) The Time Value of Money	Problems of Engineering
		c) Interest and Interest rate	Economics. Copyright 1984
		d) Simple Interest and Compound Interest	by The McGraw-Hill
		e) Inflation and Taxation	Companies. ISBN 0-07-
		f) Cash Flows (Discounted and Compounded)	023834-0
2-3	3-5	Techniques for analyzing capital investment –	-
		Compounding Periods	Engineering Management by
		a) Annual Compounding	B S, Dhillon, Technornic
		b) Discrete and Periodic Compounding	Publishing Co., 1987.
		c) Continuous Compounding	
		d) Present Worth and Future Worth	
4-5	6-8	Techniques for analyzing capital investment	Essentials of Management by
		a) Net Present Worth,	Joseph L. Massie, Prentice
		b) Rate of Returns,	hall Publishing Co., 4 th
		c) Payback Period,	Edition.
		d) Benefit-Cost Ratio	
6-8	9-11	Evaluation of public alternatives, Replacement	Engineering Management by
		Analysis, Make or buy decision,	D.I. Cleland and D. E
		Understanding the concept, principles and	Kocaoglu, McGraw-Hill,

16	Final Ser	nester Examination	
15	19 – 20	Revision	
		measuring the productivity.	
		note on productivity and methods for	
		main factors affecting productivity. A detailed	
		structure of a business Organization) Explain	
12 - 14	15 - 18	Understanding the concept, principles and	
		and book keeping, cost planning and control.	
		management; sources of financial accounting	
		development. Evaluating Financial	
		functions, recruitment and selection personnel	
		and	
9 – 11	12 – 14	Evaluating Personnel management; objectives	
		functions of Management.	1981.

6. EVALUATION CRITERIA						
Component of Assessment	Methods	Marks				
During Semester	Classwork	5%				
	Assignment	10%				
	Test	10%				
	Class Attendance	5%				
Examination	Semester Examination	70%				
Total		100%				

PETROCHEMICAL TECHNOLOGY I (CHE 513)

1. Course Time Table

Course Title/Code	Class	Semester	Duration	Credit	Credit	Class Timing
	Level			Units	hours	
PETROCHEMICAL	500	First	April, 2023	3	4	Mondays: 12-2pm
TECHNOLOGY I	Level	Semester	to July 2023			and Tuesdays: 2-
						4pm

/CHE 513			

2. Course Description/Objectives

(i) Course Description

The course introduces students to raw materials and their processing techniques; Properties of olefins and use of polymerization reactions, refining of petroleum and the various refining processes, organic reaction types and methanol production using oxosynthesis discussed. Students will be made to synthesis on the basis of acetylene, carbon monoxide and synthesis gas. Students will be made to evaluate activation energy using Arrhenius equation and the law of active masses

(ii) Objectives:

The major objectives are to:

 Provide basic knowledge and skills needed to understand the various raw materials for the petrochemical industry.

2. Equip students with an in depth knowledge of the production of olefins and the use of polymerization reactions.

3. To develop students to prepare some petrochemical compounds: acetylene, carbon monoxide and synthesis gas.

4. Equip students with the ability to evaluate activation energy, Heat of Enthalpy and the heat of entropy.

3. Course outline

1. Raw materials and their processing techniques; ethylene, acetylene, synthesis gas and liquid hydrocarbons.

2. Properties of olefins, thermo-dynamic stability of hydrocarbons, olefin production.

- 3. Use of polymerization reactions and raw materials from aromatic hydrocarbons.
- 4. Petrochemical reactions: Sulphonation, chlorination, nitration, oxidation, hydrogenation, aromatization, nomerization reactions and others. Refining of petroleum crude, petroleum refining processes.

5. Atmospheric distillation and vacuum distillation of petroleum crude and petroleum products.

- 6. Catalytic and thermal cracking of petroleum products.
- 7. Methanol production using different methods and oxosynthesis reaction. Le-Chateliar's principle and oxosynthesis reaction.

8. Synthesis on the basis of acetylene, carbon monoxide and synthesis gas.

9. Law of active masses. Evaluation of the equilibrium constant with respect to concentration and partial pressures. Evaluation of the Gibbs free energy from the equilibrium constant.

10. Energy barrier and evaluation of the activation energy using the Arrhenius equation. Graphical evaluation of the activation energy using the Arrhenius equation. Exothermic and Endothermic reactions.

11. Evaluation of the Gibbs free energy using Enthalpy and entropy of reactions.

Recommended textbooks

1. Sakar G.N. (2002), "Advanced petrochemicals", 1st edition

- 2. Sakar G.N. (1998), "Petroleum refining", 1st edition
- 3. Aggarwal O.P. and Avinash Aggawal (2001), "Engineering Chemistry", 3rd edition, Khana publishers Delhi 110006.

4. O/L & A/L Organic text books.

5. Browse the Internet.

4. Learning Outcomes

S/N	CLO	DOMAIN	TAXANOMY	PEOS	ASSESSMENT
			LEVEL		
1.	Enumerate the different sources of hydrocarbons and state the major groups of hydrocarbons.	Cognitive	1	1	Class work + Assignment + Test + Attendance
2.	Explain the importance of Petroleum crude (crude oil) as the primary source of starting materials (raw materials) for the petrochemical industry	Cognitive	2	7	Class work + Assignment + Test + Attendance
3.	List and identify the products of Petroleum refining	Cognitive	1	5	Class work + Assignment + Test + Attendance

4.	Prepare useful chemical (petrochemical) intermediates from petroleum feed stocks List and identify the	Cognitive	5	4	Class work + Assignment + Test + Attendance Class work +
	properties and production processes of olefins.	Coginave			Assignment + Test + Attendance
6.	State the use of polymerization reactions and raw materials from aromatic hydrocarbons.		1	3	Class work + Assignment + Test + Attendance
7.	Determine the activation energy, heat of reaction, enthalpy and entropy of reactions		4	4	Class work + Assignment + Test + Attendance
8.	Predict the Gibbs free energy and the type of reaction with respect to whether it is exothermic or endothermic reaction.		6	4	Class work + Assignment + Test + Attendance
9.	Synthesis base on acetylene, carbon monoxide and synthesis gas.		5	3	Class work + Assignment + Test + Attendance

5. Detailed Lecture Plan

Week	Lectures	Course Content to be covered						
NO								
1.	1-2	Raw materials and their processing techniques; ethylene, acetylene, synthesis gas and liquid hydrocarbons.						

2.	3-4	Properties of olefins, thermo-dynamic stability of hydrocarbons, olefin				
		production				
3.	5-6	Use of polymerization reactions and raw materials from aromatic				
		hydrocarbons.				
4.	7-8	Petrochemical reactions: Sulphonation, chlorination, nitration, oxidation,				
		hydrogenation, aromatization, nomerization reactions and others. Refining				
		of petroleum crude, petroleum refining processes.				
5.	9-10	Atmospheric distillation and vacuum distillation of petroleum crude and				
		petroleum products.				
6.	11-12	Catalytic and thermal cracking of petroleum products				
7.	13-14	Methanol production using different methods and oxosynthesis reaction.				
		Le-Chateliar's principle and oxosynthesis reaction.				
8.	15-16	Evaluation of Assignment 1 and Test 2				
9.	17-18	Synthesis on the basis of acetylene, carbon monoxide and synthesis gas				
10.	19-20	Law of active masses. Evaluation of the equilibrium constant with respect				
		to concentration and partial pressures.				
11.	21-22	Evaluation of the Gibbs free energy from the equilibrium constant.				
12.	23-24	Energy barrier and evaluation of the activation energy using the Arrhenius				
		equation.				
13.	25-26	Graphical evaluation of the activation energy using the Arrhenius equation.				
		Exothermic and Endothermic reactions				
14.	27-28	Evaluation of the gibbs free energy using Enthalpy and entropy of reactions.				
15.	29-30	Revision				
16.	31-32	Final semester Examination				

6. Evaluation Criteria

Component of Assessment	Method	Marks (%)
Continuous Assessment	Class attendance	5
	Asssignment	10
	Mid semester Test	15
Examination	Semester Examination	70
Total		100

PETROCHEMICAL TECHNOLOGY II (CHE 516)

1. Course Time Table

Course Title/Code	Class	Semester	Duration	Credit	Credit	Class Timing
	Level			Units	hours	
PETROCHEMICAL	500	Second	April, 2023	3	4	Mondays: 12-2pm
TECHNOLOGY I	Level	Semester	to July 2023			and Tuesdays: 2-
/CHE 516						4pm

2. Course Description/Objectives

(i) Course Description

The course introduces students to paraffin, olefins and halogenations processes; Chlorination products and polymerization. Detail discussion of organic reaction types, oxidation of paraffin and olefins and condensation of Aldehyde. Students will be made to study Natural and synthetic polymers: synthetic and natural rubbers, Fibers, plastics and resins.

(ii) Objectives:

The major objectives are to:

1. Equip students with the knowledge in understanding the processes of adding halogens

to paraffins and olefins.

2. Provide students with an in-depth knowledge of the chlorination products,

polymerization processes and oxidation of paraffin

3. Produce students with skills in differentiating between natural and synthetic polymers

4. Prepare polymers: nylons, plastics, dyes, gums soaps, detergents and other consumer polymer products.

3. Course outline

- 1. Halogenations of Paraffin: Methane, ethane. Olefins:
- 2. Ethylene liquid and gaseous phase halogenations processes.
- 3. Chlorination products of Olefins:
- 4. Nylons and production of nylons. Uses of nylons.
- 5. Synthetic fibres and glue. Plastics and resins:
- 6. Characteristics of plastics, moulding of plastics, methods of fabricating plastics.

- 7. Thermosetting and thermoplastic resins.
- 8. Vinyl Chloride from acetylene.
- 9. Freon and antifreezes.
- 10. Polymers and polymerization processes.
- 11. Hydrolysis, hydration, dehydration, esterification processes in the production of solvents.
- 12. Plastificators and synthetic lubricants.

13. Oxidation of paraffin and Olefins: ethylene oxide and some higher oxides of hydrocarbons.

- 14. Amines and types of amines. Amines production and uses.
- 15. Amides and types of amides. Amides production and uses.
- 16. Condensation of Aldehyde with Olefins.
- 17. Natural rubbers. Synthetic Rubbers- Synthesis of isoprene and others synthetic rubbers.

Recommended textbooks

- 1. Sakar G.N. (2002), "Advanced petrochemicals", 1st edition
- 2. Sakar G.N. (1998), "Petroleum refining", 1st edition
- 3. Aggarwal O.P. and Avinash Aggawal (2001), "Engineering Chemistry", 3rd edition,

Khana publishers Delhi 110006.

- 4. O/L & A/L Organic text books.
- 5. Browse the Internet.

4. Learning Outcomes

S/N	CLO	DOMAIN	TAXANOMY	PEOS	ASSESSMENT
			LEVEL		
1.	Describe paraffin and	Cognitive	2	1	Class work +
	olefin halogenations				Assignment + Test
	processes.				+ Attendance
2.	List and identify different	Cognitive	1	2	Class work +
	chlorination products.				Assignment + Test
					+ Attendance
3.	Explain the uses and	Cognitive	3	7	Class work +
	applications of the				Assignment + Test

	chlorination products and				+ Attendance
	polymerization processes				
4.	Equip and engage students	Cognitive	5	5	Class work +
	to reclaim rubber in our				Assignment + Test
	surroundings.				+ Attendance
5.	Explain the use of the	Cognitive	2	4	Class work +
	various organic reactions				Assignment + Test
	for the production of				+ Attendance
	petrochemicals				
6.	Differentiate natural rubber		4	1	Class work +
	from synthetic rubbers.				Assignment + Test
					+ Attendance
7.	Prepare various consumer		6	5	Class work +
	products: Nylon, glue or				Assignment + Test
	gum, antifreezers,				+ Attendance
	lubricants, plastificators,				
	dyes, amines, amides soap,				
	detergents and other				
	products.				

5. Detailed Lecture Plan

Week	Week Lectures Course Content to be covered			
NO				
1.	1-2	Halogenations of Paraffin: Methane, ethane. Olefins:		
2.	3-4	Ethylene liquid and gaseous phase halogenations processes.		
3.	5-6	Chlorination products of Olefins		
4.	7-8	Nylons and production of nylons. Uses of nylons.		

5.	9-10	
		Synthetic fibres and glue. Plastics and resins
6.	11-12	Characteristics of plastics, moulding of plastics, methods of fabricating
		plastics.
7.	13-14	Thermosetting and thermoplastic resins
8.	15-16	Evaluation of Assignment 1 and Test 2
9.	17-18	Vinyl Chloride from acetylene. Freon and antifreezes
10.	19-20	Polymers and polymerization processes
11.	21-22	Hydrolysis, hydration, dehydration, esterification processes in the
		production of solvents. Plastificators and synthetic lubricants.
12.	23-24	Oxidation of paraffin and Olefins: ethylene oxide and some higher oxides of
		hydrocarbons
13.	25-26	Amines and types of amines. Amines production and uses. Amides and
		types of amides. Amides production and uses.
14.	27-28	nsation of Aldehyde with Olefins. Natural rubbers. Synthetic Rubbers-
		Synthesis of isoprene and others synthetic rubbers
15.	29-30	Revision
16.	31-32	Final semester Examination

6. Evaluation Criteria

Component of Assessment	Method	Marks (%)
Continuous Assessment	Class attendance	5
	Asssignment	10
	Mid semester Test	15
Examination	Semester Examination	70
Total		100

POLYMER SCIENCE AND TECHNOLOGY II (CHE 544)

1. Course Time Table

Course Title/Code	Class	Semester	Duration	Credit	Credit	Class Timing
	Level			Units	hours	
POLYMER SCIENCE	500	Second	April, 2023	3	4	Mondays: 2-4pm

AND TECHNOLOGY	Level	Semester	to July 2023		and Tuesdays: 12-
II / CHE 544					2pm

2. Course Description/Objectives

(i) Course Description

The course introduces students to polymer properties and application; Polymer melt Rheology; Viscous flow and Solid state properties. It explains Stress and Basic mechanical properties. It discusses in detail elastic stress- strain relations, viscoelastic models and dynamic mechanical tests.

(ii) Objectives:

The major objectives are to:

- 1. Produce high level students that can understand polymer properties and application.
- Provide basic knowledge and skills needed for the understanding and analysis of polymer properties and application problems.
- 3. Develop students to use tests machinery.
- 4. To introduce students to the concept of Polymer melt Rheology; Viscous flow and Solid state properties.

5. To lead students to independently study stress-strain relations and dynamic mechanical tests.

6. To encourage students to go into the field of polymers.

3. Course outline

- 1. Polymer properties and application: Polymer solution properties.
- 2. Criteria for polymer solubility chain conformations of dissolved polymer.
- 3. Thermodynamics of polymer solutions, fractionation of polymers.

Polymer melt Rheology: Simple rheological responses (ideally elastic, purely viscous flow, viscoelastic response, rubber elasticity.

5. Viscous flow (Newton law of viscosity, Non-Newtonian behavior (various models), Laminar flow of Newtonian fluids.

6. Solid state properties (mechanical properties only).

7. Introduction to mechanical tests (stress-strain, creep, stress – relaxation, dynamics mechanical tests, hardness, compact).

8. Stress – strain measurements: definitions (true Engineering), Strain (true Engineering).

- 9. Elasticity and plasticity.
- 10. Basic mechanical properties: stiffness, elasticity, strength toughness, resilience.
- 11. Typical polymer stress-strain responses.
- 12. Elastic stress- strain relations (uniaxial loading).
- 13. Hooke;s law and Young;s modulus.
- 14. Shear modulus and interrelationship between elastic constants, biaxial loading.
- 15. Theory of plasticity, polymer fraction, creep and stress- relaxation tests.

16. Viscoelastic models (Maxwell, voigt combined response, relaxation and Retardation spectra).

17. Generalized linear viscoelasticity and superposition principles (Boltzman superposition principle, Time-Temperature equivalence i.e IOLF equation).

18. Dynamic mechanical tests, and phenomenological aspect of mechanical tests. (Pre-requisites CHE 413)

Recommended textbooks

- Robert O. Ebewele (200). Polymer Science and Technology, *Department of Chemical Engineering, University of Benin, Benin City, Nigeria*. Boca Raton New York, CRC Press Copyright 2000.
- 2. Others: Available in the www. polymer science and Technology

4. Learning Outcomes

S/N	CLO	DOMAIN	TAXANOMY	PEOS	ASSESSMENT
			LEVEL		
1.	List and identify polymer	Cognitive	1	1	Class work +
	properties and application.				Assignment + Test + Attendance
2.	Explain rheology, viscosity and some terms applicable to polymer flow.	Cognitive	2	7	Class work + Assignment + Test + Attendance
3.	Describe Newtonian and non-Newtonian fluids.	Cognitive	2	2	Class work + Assignment + Test + Attendance
4.	Analyze various concepts in relation to fluid	Cognitive	4	4	Class work + Assignment + Test

					+ Attendance
5.	Explain stress-strain	Cognitive	2	7	Class work +
	relations and dynamic				Assignment + Test
	mechanical tests.				+ Attendance
6.	State some laws in	Cognitive	1	1	Class work +
	rheology and viscous flow				Assignment + Test
					+ Attendance
7.	Assess the challenges of	Cognitive	6	5	Class work +
	stress-strain measurement				Assignment + Test
	tests equipments				+ Attendance

5. Detailed Lecture Plan

Week	Lectures	Course Content to be covered			
NO					
1.	1-2	Polymer properties and application: Polymer solution properties.			
2.	3-4	Criteria for polymer solubility chain conformations of dissolved polymer.			
3.	5-6	Thermodynamics of polymer solutions, fractionation of polymers			
4.	7-8	Polymer melt Rheology: Simple rheological responses (ideally elastic, purely viscous flow, viscoelastic response, rubber elasticity			
5.	9-10	Viscous flow (Newton law of viscosity, Non-Newtonian behavior (various models), Laminar flow of Newtonian fluids			
6.	11-12	Solid state properties (mechanical properties only).			
7.	13-14	Introduction to mechanical tests (stress-strain, creep, stress - relaxation,			
		dynamics mechanical tests, hardness, compact).			
8.	15-16	Stress - strain measurements: definitions (true Engineering), Strain (true			
		Engineering).			
9.	17-18	Elasticity and plasticity.			
		Basic mechanical properties: stiffness, elasticity, strength toughness,			
		resilience			
10.	19-20	Typical polymer stress-strain responses. Elastic stress- strain relations			
		(uniaxial loading).			

11.	21-22	Evaluation of Assignments and tests. Hooke;s law and Young;s modulus.
12.	23-24	Shear modulus and interrelationship between elastic constants, biaxialloading.Theory of plasticity, polymer fraction, creep and stress- relaxation tests.
13.	25-26	Viscoelastic models (Maxwell, voigt combined response, relaxation and Retardation spectra).
14.	27-28	Generalized linear viscoelasticity and superposition principles (Boltzman superposition principle, Time-Temperature equivalence i.e IOLF equation). Dynamic mechanical tests, and phenomenological aspect of mechanical tests. (Pre-requisites CHE 413)
15.	29-30	Revision
16.	31-32	Final semester Examination

6. Evaluation Criteria

Component of Assessment	Method	Marks (%)
Continuous Assessment	Class attendance	5
	Asssignment	10
	Mid semester Test	15
Examination	Semester Examination	70
Total		100

CHEMICAL TECHNOLOGY I (CHE 511)

1.Course Time ta	1.Course Time table						
Course	Name of Lecturers:	Class	Semester:	Duration:			
Title/Code:		Level:					
	Engr. Dr Ebiundu		First Semester	April, 2023 –			
Chemical	Komonibo	500 Level		July, 2023			
Technology I –							
CHE 511							
Credit Unit: 3	Credit hours: 4	Class Timing	g: Mondays 12pm	n – 2pm			
Cicuit Ollit. 5	Credit nours. 4	Wednesday 12pm – 2pm					

Thursdays 4pm – 5pm (Lab)

2.Course Description/Objectives

Chemical Technology is a core fundamental course in Chemical Engineering research. It offers sound approaches to Chemical plant design, Economics and unit operations in the manufacture of Chemicals and other useful products in various Industrial sectors such as in Chemical Industries, Medicine and Pharmaceutical Industries, Petrochemicals, Agricultural Industries, Plastic Industries, Manmade Fiber and Film Industries. To produce a world class Chemical Engineer, the course therefore, is essentially a compulsory one for every Chemical Engineer to study.

Relevance is seen in Chemical Engineers from the department being able to apply these Engineering technics, such as design, manufacture, protect, preserve, install, manage and operate the equipment and tools in the laboratories for better performance and safety being the watchword, especially in the aforementioned Industrial Sectors in Nigeria and abroad.

This course will introduce students into Chemical processing of raw materials into useful and profitable products, which are used both as consumer goods and as intermediates for further chemical and physical modifications to yield consumer products. An indebt understanding and operations of Chemical Industries in Nigeria. The basic principles of Chemical Technology and the work of a Chemical Engineer. Understand the principles on which processing equipment operates in the conversion of raw materials gotten from the environment, i.e air, water, petroleum, agricultural products, minerals, organic, inorganic materials, etc. into basic or intermediate chemicals as well as companies that convert these intermediate into finished or consumer products

The objectives sought in this course are:

- 1. To explain the various chemical processes in a generalized form through correlations into flow sheets and descriptive text.
- 2. To enable students understand and explain Unit processes: chemical change. The commercialization of a chemical reaction under such conditions as to be economically profitable.
- 3. To describe Unit operations: physical changes.

- 4. To explain Physical chemistry: equilibriums and reaction rates.
- 5. To analyse the Economic principles of Chemical Processing Industries: costs, statistics, and consumption.
- 6. To analyse and explain Energy and power utilization in Chemical Processing Industries: chemical as well as electrical and mechanical.

3. Course Outlines

Chemical Industry in Nigeria. Chemical Processing and the work of a Chemical Engineer.

Raw material resources and utilization.

Basic principles of Chemical Technology.

Technology of Industrial acids - Sulphuric, Phosphoric etc. Fertilizers.

The silicate industry: Ceramics Industries, Glass Industries and Cement Industries.

The Electrolytic Industries: Electrolysis and the production of sodium hydroxide, chlorine and hydrochloric acid. Electro-thermal Industries:

Artificial abrasives, Calcium Carbide and Miscellaneous Electro-Thermal Products.

Plastic Industries: Raw materials and manufacturing processes.

Industrial Carbon: Potassium Industries

Resources/Recommended Textbooks:

Books:

Shreve's Chemical process industries 5th Edition, R. NORRIS SHREVE Professor of Chemical Engineering Purdue University, Lafayette, Ind. Mc GRAW-HILL BOOK COMPANY, INC. New York /, Toronto London, KOGAKUSHA COMPANY, LTD. Tokyo

4.Co	4.Course Learning Outcomes (CLOs)						
At th	e end of this course, stu	idents shall b	be able to under	rstand the f	following:		
S/N	CLO	Domain	Taxonomy	PEOs	Assessment		
			Level				
1	Understand the	Cognitive	2	2	Classwork + Assignment +		
	principles on which				Test + Attendance		
	processing						
	equipment operates						
	in the conversion of						

	raw materials gotten				
	from the				
	environment, i.e air,				
	water, petroleum,				
	agricultural				
	products, minerals,				
	organic, inorganic				
	materials, etc. into				
	basic or intermediate				
	chemicals as well as				
	companies that				
	convert these				
	intermediate into				
	finished or consumer				
	products.				
2	Explain Unit	Cognitive	3	1	Classwork + Assignment +
	processes: chemical				Test + Attendance
	change. The				
	commercialization				
	of a chemical				
	reaction				
3	Analyse the	Cognitive	5	1	Classwork + Assignment +
	Economic principles				Test + Attendance
	of Chemical				
	Processing				
	Industries: costs,				
	statistics, and				
	consumption				
4	Explain Chemical	Cognitive	5	3	Classwork + Assignment +
	Processing and the				Test + Attendance
	work of a Chemical				
	Engineer				

5	Describe the	Cognitive	3	3	Classwork + Assignment +
	Technology and				Test + Attendance
	manufacture of				
	Industrial acids.				
6	Describe how the	Cognitive	3	3	Classwork + Assignment +
	Silicate Industries				Test + Attendance
	operate in the				
	manufacturing				
	process of Ceramics,				
	Glass and Cement				
7	Describe and explain	Cognitive	3	3	Classwork + Assignment + Test
	the full operations in				+ Attendance
	the Electrolytic and				
	Electro-Thermal				
	Industries				
8	Explain how raw	Cognitive	3	3	Classwork + Assignment + Test
	materials are				+ Attendance
	converted to useful				
	products in the Plastic				
	Industries				

5. DETAILED LECTURE PLAN

WEEK 1: Introductory class and preliminaries

WEEK 2,3: Chemical Industry in Nigeria. Raw material resources and utilization

WEEK 4: Basic principles of Chemical Technology.

WEEK 5,6,7: Technology of Industrial acids - Sulphuric, Phosphoric etc. Fertilizers.

WEEK 8: The silicate industry: ceramics, glass and cement manufacture

WEEK 9,10: The Electrolytic Industries: Electrolysis and the production of sodium hydroxide,

chlorine and hydrochloric acid. Electro-thermal Industries: Artificial abrasives, Calcium Carbide

and Miscellaneous Electro-Thermal Products. Plastic Industries: Raw materials and manufacturing processes. Industrial Carbon: Potassium Industries

6.STUDENT ASSESSMENT AND GRADE ASSIGNMENT

Assessment shall be based on the following:

Assignment 1:	5marks
Assignment 2:	5marks
Test 1:	10marks
Test 2:	10marks
Final Examination:	70marks
Total:	100marks

CHEMICAL TECHNOLOGY II (CHE 514)

1.Course Time table							
Course	Name of Lecturers:	Class	Semester:	Duration:			
Title/Code:		Level:					
Chemical	Engr. Dr Ebiundu		First Semester	April, 2023 –			
Technology II –	Komonibo	500 Level		July, 2023			
CHE 514							
		Class Timing	g: Mondays 12pm	n – 2pm			
Credit Unit: 3	Credit hours: 4		Wednesday 12p	om – 2pm			
			Thursdays 4pm	– 5pm (Lab)			
2.Course Description/Objectives							

Chemical Technology is a core fundamental course in Chemical Engineering research. It offers sound approaches to Chemical plant design, Economics and unit operations in the manufacture of Chemicals and other useful products in various Industrial sectors such as in Chemical Industries, Medicine and Pharmaceutical Industries, Petrochemicals, Agricultural Industries, Plastic Industries, Manmade Fiber and Film Industries. To produce a world class Chemical Engineer, the course therefore, is essentially a compulsory one for every Chemical Engineer to study.

Relevance is seen in Chemical Engineers from the department being able to apply these Engineering technics, such as design, manufacture, protect, preserve, install, manage and operate the equipment and tools in the laboratories for better performance and safety being the

watchword, especially in the aforementioned Industrial Sectors in Nigeria and abroad.

This course will introduce students into Chemical processing of raw materials into useful and profitable products, which are used both as consumer goods and as intermediates for further chemical and physical modifications to yield consumer products. An indebt understanding and operations of Chemical Industries in Nigeria. The basic principles of Chemical Technology and the work of a Chemical Engineer. Understand the principles on which processing equipment operates in the conversion of raw materials gotten from the environment, i.e air, water, petroleum, agricultural products, minerals, organic, inorganic materials, etc. into basic or intermediate chemicals as well as companies that convert these intermediate into finished or consumer products. The processes involved in the manufacture of valuable products from Industries such as, Fermentation Industries, Pulp and paper Industries, Soap and detergent Industries, Sugar and Starch Industries, Processing of Cassava and its derivatives

The objectives sought in this course are:

- 1. To explain the various chemical processes in a generalized form through correlations into flow sheets and descriptive text.
- 2. To enable students understand and explain Unit processes: chemical change. The commercialization of a chemical reaction under such conditions as to be economically profitable.
- 3. To describe Unit operations: physical changes.
- 4. To explain Physical chemistry: equilibriums and reaction rates.
- 5. To analyse the Economic principles of Chemical Processing Industries: costs, statistics, and consumption.
- 6. To analyse and explain Energy and power utilization in Chemical Processing Industries: chemical as well as electrical and mechanical.
- 7. To describe how the Fermentation Industries operate in the manufacturing process of Industrial Alcohols.
- 8. To describe and explain the full operations in the Soap and Detergents Industries
- 9. To explain the manufacturing process of Surface Coating Industries
- 10. To describe the principle involved in the Processing of cassava and its derivatives
- 11. To explain the principles behind the manufacturing process of Printing inks, polishes and adhesives

3. Course Outlines

- Fermentation Industries: Manufacture of industrial alcohols, Malt beverages and beer. Sugar from cane and beet.
- 2. Processing of cassava and its derivatives.
- 3. Palm oil and soap production. Detergents natural and synthetic types; manufacture and biodegradability.
- 4. Pulp and paper Industries; specialty papers.
- 5. Processing of vegetable oils, animal fats and waxes.
- 6. Surface coatings and paint processing technology. Printing inks, polishes and adhesives.
- 7. Rubber Industries: Rubber fabrication.
- 8. Petrochemical Industries: Unit operations, Chemical conversions, manufacture of Petrochemicals, reactions producing Petrochemicals.
- 9. Fragrances, Flavours and Food additives: The perfume Industry, the Flavouring Industry and Food additives

Resources/Recommended Textbooks:

Books:

Shreve's Chemical process industries 5th Edition, R. NORRIS SHREVE Professor of Chemical Engineering Purdue University, Lafayette, Ind. Mc GRAW-HILL BOOK COMPANY, INC. New York /, Toronto London, KOGAKUSHA COMPANY, LTD. Tokyo

4.Co	4.Course Learning Outcomes (CLOs)						
At th	At the end of this course, students shall be able to understand the following:						
S/N	CLO	Domain	Taxonomy Level	PEOs	Assessment		
1	Understand the principles on which processing equipment operates in the conversion of raw materials gotten from the	Cognitive	2	2	Classwork + Assignment + Test + Attendance		

	water, petroleum,				
	agricultural				
	products, minerals,				
	organic, inorganic				
	materials, etc. into				
	basic or intermediate				
	chemicals as well as				
	companies that				
	convert these				
	intermediate into				
	finished or consumer				
	products.				
2	Explain Unit	Cognitive	3	1	Classwork + Assignment +
	processes: chemical				Test + Attendance
	change. The				
	commercialization				
	of a chemical				
	reaction				
3	Analyse the	Cognitive	5	1	Classwork + Assignment +
	Economic principles				Test + Attendance
	of Chemical				
	Processing				
	Industries: costs,				
	statistics, and				
	consumption				
4	Explain Chemical	Cognitive	5	3	Classwork + Assignment +
	Processing and the				Test + Attendance
	work of a Chemical				
	Engineer				
5	Describe how the	Cognitive	3	3	Classwork + Assignment +
	Fermentation				Test + Attendance

	Industries operate in the manufacturing process of Industrial Alcohols				
6	Describe and explain the full operations in the Soap and Detergents Industries	Cognitive	3	3	Classwork + Assignment + Test + Attendance
7	Explain the manufacturing process of Surface Coating Industries	Cognitive	3	3	Classwork + Assignment + Test + Attendance
8	Explain the principle involved in the Processing of cassava and its derivatives	Cognitive	3	3	Classwork + Assignment + Test + Attendance

5. DETAILED LECTURE PLAN

WEEK 1: Introductory class and preliminaries

WEEK 2,3: Fermentation. Manufacture of industrial alcohols, Malt beverages and beer. Sugar from cane and beet. Processing of cassava and its derivatives

WEEK 4,5,6: Palm oil and soap production. Detergents – natural and synthetic types; manufacture and biodegradability.

WEEK 7: Pulp and paper manufacture, specialty papers.

WEEK 8-9: Processing of vegetable oils and animal fats. Surface coatings and paint processing technology.

WEEK 10: Printing inks, polishes and adhesives. Rubber Industries: Rubber fabrication. Petrochemical Industries: Unit operations, Chemical conversions, manufacture of Petrochemicals, reactions producing Petrochemicals. Fragrances, Flavours and Food additives: The perfume Industry, the Flavouring Industry and Food additives.

6.STUDENT ASSESSMENT AND GRADE ASSIGNMENT

Assessment shall be based on the following:

Total:	100markS
Final Examination:	70marks
Test 2:	10marks
Test 1:	10marks
Assignment 2:	5marks
Assignment 1:	5marks

1. Course Time table							
Course	Name of Lecturers:	Class	Semester:	Duration:			
Title/Code:		Level:					
Chemical	Engr. Dr Ebiundu		First Semester	April, 2023 –			
Reaction	Komonibo	500 Level		July, 2023			
Engineering II –							
CHE 541							
		Class Timing	g: Mondays 12pn	n – 2pm			
Credit Unit: 3	Credit hours: 4		Wednesday 12pm – 2pm				
			Thursdays 4pm	u – 5pm (Lab)			

CHEMICAL REACTION ENGINEERING II (CHE 541)

2. Course Description/Objectives

Reactor design is a core fundamental course in Chemical Engineering research. Chemical reaction engineering is that engineering activity concerned with the exploitation of chemical reactions on a commercial scale (i.e., minimizing cost and maximizing profits). Its goal is the successful design and operation of chemical reactors, and probably more than any other activity

it sets chemical engineering apart as a distinct branch of the engineering profession in the society. To produce a world class Chemical Engineer, the course therefore, is essentially a compulsory one for every Chemical Engineer to study.

To understand and be able to apply methods to design multiple types of reactors and reactions in complex systems. Reactor design uses information, knowledge, and experience from a variety of areas-thermodynamics, chemical kinetics, fluid mechanics, heat transfer, mass transfer, and economics. Chemical reaction engineering is the synthesis of all these factors with the aim of properly designing chemical reactors.

This course will enable students solve complex systems relating to Multiple reactions and reactor design in Chemical Reaction Engineering. Design concepts. Safety considerations in Multiple reactors. Multiple reactions (Series and Parallel reactions), in reactor design.

Homogeneous/Heterogeneous, Exothermic/Endothermic, etc reactions, Reactions on Solid Catalyst: Trickle Beds, Slurry Reactors, Three-Phase Fluidized Beds, Solid Catalysed Reactions Systems. Non-Catalytic Systems. Fluid – particle reactions (Kinetics) and Fluid-particle reactor Systems.

3. Course Outlines

Design for multiple reactions: Reactions in Parallel and in Series.

Extensions and applications of Series and Parallel Reactions.

Temperature and Pressure effects.

Design of fluid particle reactors.

Chemical reactions control and gas film diffusion control processes.

Fluidized bed reactors. Slurry reaction Kinetics.

Design of fluid reactors. Solid catalysed reactors.

Design of stated adiabatic packed bed reactors, and abeling bed reactors

Resources/Recommended Textbooks:

- Levenspiel, O. Chemical Reaction Engineering, John Wiley & Sons, Inc, New York 1999
- Froment, G.F Bischoff K.B and De Wilde J. Chemical Reactor Analysis and Design, 3rd Ed. John Wiley & Sons, Inc, New York, 2011
- 3. Smith, J.M. Chemical Engineering Kinetics, 3rd Ed. McGraw-Hill Book Company

- 4. Charles G. Hill, Thatcher W. Root. Introduction to Chemical Engineering Kinetics & Reactor Design, 2nd Ed.
- 5. Claire Vallance: An Introduction to Chemical Kinetics
- 6. Elements of Chemical Reaction Engineering, 5th Edition, By H. Scott Foglar

4. Co	4. Course Learning Outcomes (CLOs)							
At th	At the end of this course, students shall be able to understand the following:							
S/N	CLO	Domain	Taxonomy	PEOs	Assessment			
			Level					
1	Multiple reactions (Series and	Cognitive	2	2	Classwork +			
	Parallel reactions), in reactor				Assignment + Test +			
	design.				Attendance			
	Homogeneous/Heterogeneous,							
	Exothermic/Endothermic, etc							
	reactions							
2	Steady-State Isothermal and	Cognitive	3	1	Classwork +			
	Non – Isothermal Reactor				Assignment + Test +			
	design				Attendance			
3	Temperature and Pressure	Cognitive	5	1	Classwork +			
	Effects on single and multiple				Assignment + Test +			
	reactions				Attendance			
4	Reactions on Solid Catalyst:	Cognitive	5	3	Classwork +			
	Trickle Beds, Slurry				Assignment + Test +			
	Reactors, Three-Phase				Attendance			
	Fluidized Beds							
5	Solid Catalysed Reactions	Cognitive	3	3	Classwork +			
	Systems				Assignment + Test +			
					Attendance			
6	Non-Catalytic Systems. Fluid	Cognitive	3	3	Classwork +			
	- particle reactions (Kinetics)				Assignment + Test +			
	and Fluid-particle reactor				Attendance			
	design							
	and Fluid-particle reactor				e			

5. DETAILED LECTURE PLAN

WEEK 1: Introductory class and preliminaries

WEEK 2, 3, 4: Design for multiple reactions: Reactions in Parallel and in Series. Extensions and applications of Series and Parallel Reactions. Temperature and Pressure effects

WEEK 5-6: Design of fluid particle reactors. Chemical reactions control and gas film diffusion control processes

WEEK 7: Fluidized bed reactors. Slurry reaction Kinetics. Design of fluid reactors.

WEEK 8: Solid catalysed reactors

WEEK 9-10: Design of stated adiabatic packed bed reactors, and abeling bed reactors

6. STUDENT ASSESSMENT AND GRADE ASSIGNMENT

Assessment shall be based on the following:

Assignment 1:5marksAssignment 2:5marksTest 1:10marksTest 2:10marksFinal Examination:70marksTotal:100marks